
ar
X

iv
:1

90
9.

00
93

8v
4 

 [
cs

.C
R

] 
 1

8 
A

ug
 2

02
0

DECO: Liberating Web Data Using Decentralized Oracles for TLS
The extended version

Fan Zhang∗

Cornell Tech
Deepak Maram∗

Cornell Tech
Harjasleen Malvai∗

Cornell University

Steven Goldfeder∗

Cornell Tech
Ari Juels∗

Cornell Tech

ABSTRACT

Thanks to the widespread deployment of TLS, users can access
private data over channels with end-to-end confidentiality and in-
tegrity. What they cannot do, however, is prove to third parties the
provenance of such data, i.e., that it genuinely came from a particu-
lar website. Existing approaches either introduce undesirable trust
assumptions or require server-side modifications.

Users’ private data is thus locked up at its point of origin. Users
cannot export data in an integrity-protected way to other applica-
tions without help and permission from the current data holder.

We propose DECO (short for decentralized oracle) to address
the above problems. DECO allows users to prove that a piece of
data accessed via TLS came from a particular website and option-
ally prove statements about such data in zero-knowledge, keeping
the data itself secret. DECO is the first such system that works
without trusted hardware or server-side modifications.

DECO can liberate private data from centralized web-service
silos, making it accessible to a rich spectrum of applications. To
demonstrate the power ofDECO, we implement three applications
that are hard to achieve without it: a private financial instrument
using smart contracts, converting legacy credentials to anonymous
credentials, and verifiable claims against price discrimination.

1 INTRODUCTION

TLS is a powerful, widely deployed protocol that allows users to ac-
cess web data over confidential, integrity-protected channels. But
TLS has a serious limitation: it doesn’t allow a user to prove to
third parties that a piece of data she has accessed authentically
came from a particular website. As a result, data use is often re-
stricted to its point of origin, curtailing data portability by users, a
right acknowledged by recent regulations such as GDPR [8].

Specifically, when a user accesses data online via TLS, she can-
not securely export it, without help (hence permission) from the
current data holder. Vast quantities of private data are thus inten-
tionally or unintentionally locked up in the “deep web”—the part
of the web that isn’t publicly accessible.

To understand the problem, suppose Alice wants to prove to
Bob that she’s over 18. Currently, age verification services [1] re-
quire users to upload IDs and detailed personal information, which
raises privacy concerns. But various websites, such as company
payroll records or DMV websites, in principle store and serve ver-
ified birth dates. Alice could send a screenshot of her birth date
from such a site, but this is easily forged. And even if the screenshot
could somehow be proven authentic, it would leak information—
revealing her exact birth date, not just that she’s over 18.

∗Also affiliated with IC3, The Initiative for CryptoCurrencies & Contracts.

Proposed to prove provenance of online data to smart contracts,
oracles are a step towards exporting TLS-protected data to other
systemswith provenance and integrity assurances. Existing schemes,
however, have serious limitations. They either only workwith dep-
recated TLS versions and offer no privacy from the oracle (e.g., TL-
SNotary [7]) or rely on trusted hardware (e.g., Town Crier [78]),
against which various attacks have recently emerged, e.g., [24].

Another class of oracle schemes assumes server-side coopera-
tion, mandating that servers install TLS extensions (e.g., [65]) or
change application-layer logic (e.g., [31, 77]). Server-facilitated or-
acle schemes suffer from two fundamental problems. First, they
break legacy compatibility, causing a significant barrier to wide
adoption. Moreover, such solutions only provide conditional ex-
portability because the web servers have the sole discretion to de-
termine which data can be exported, and can censor export at-
tempts at will. A mechanism that allows users to export any data
they have access to would enable a whole host of currently unre-
alizable applications.

1.1 DECO

To address the above problems, we proposeDECO, a decentralized
oracle for TLS. Unlike oracle schemes that require per-website sup-
port, DECO is source-agnostic and supports any website running
standard TLS. Unlike solutions that rely on websites’ participation,
DECO requires no server-side cooperation. Thus a single instance
ofDECO could enable anyone to become an oracle for anywebsite.

DECOmakes rich Internet data accessible with authenticity and
privacy assurances to a wide range of applications, including ones
that cannot access the Internet such as smart contracts. DECO
could fundamentally shift today’s model of web data dissemina-
tion by providing private data delivery with an option for transfer
to third parties or public release. This technical capability high-
lights potential future legal and regulatory challenges, but also an-
ticipates the creation and delivery of appealing new services. Im-
portantly, DECO does not require trusted hardware, unlike alter-
native approaches that could achieve a similar vision, e.g., [54, 78].

At a high level, the prover commits to a piece of data D and
proves to the verifier that D came from a TLS server S and option-
ally a statement πD about D. E.g., in the example of proving age,
the statement πD could be the predicate “D = y/m/d is Alice’s date
of birth and the current date - D is at least 18 years.”

Informally,DECO achieves authenticity: The verifier is convinced
only if the asserted statement about D is true and D is indeed ob-
tained from website S . DECO also provides privacy in that the ver-
ifier only learns the that the statement πD holds for some D ob-
tained from S .

http://arxiv.org/abs/1909.00938v4
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1.2 Technical challenges

Designing DECO with the required security and practical perfor-
mance, while using legacy-(TLS)-compatible primitives, introduces
several important technical challenges. The main challenge stems
from the fact that TLS generates symmetric encryption and authen-
tication keys that are shared by the client (prover in DECO) and
web server. Thus, the client can forge arbitrary TLS session data,
in the sense of signing the data with valid authentication keys.

To address this challenge, DECO introduces a novel three-party
handshake protocol among the prover, verifier, and web server that
creates an unforgeable commitment by the prover to the verifier on
a piece of TLS session data D. The verifier can check that D is au-
thentically from the TLS server. From the prover’s perspective, the
three-party handshake preserves the security of TLS in presence
of a malicious verifier.

Efficient selective opening. After committing to D, the prover
proves statements about the commitment. Although arbitrary state-
ments can be supported in theory, we optimize for what are likely
to be the most popular applications—revealing only substrings of
the response to the verifier. We call such statements selective open-
ing. Fine-grained selective opening allows users to hide sensitive
information and reduces the input length to the subsequent proofs.

A naïve solution would involve expensive verifiable decryption
of TLS records using generic zero-knowledge proofs (ZKPs), but
we achieve an orders-of-magnitude efficiency improvement by ex-
ploiting the TLS record structure. For example, a direct implemen-
tation of verifiable decryption of a TLS record would involve prov-
ing correct execution of a circuit of 1024 AES invocations in zero-
knowledge, whereas by leveraging the MAC-then-encrypt struc-
ture of CBC-HMAC, we achieve the same with only 3 AES invoca-
tions.

Context integrity. Selective opening allows the prover to only re-
veal a substringD′ of the server’s responseD. However, a substring
maymean different things depending onwhen it appears and ama-
licious prover could cheat by quoting out of context. Therefore we
need to prove not just that D′ appears in D, but that it appears
in the expected context, i.e., D′ has context integrity with respect
to D. (Note that this differs from “contextual integrity” in privacy
theory [57].)

Context-integrity attacks can be thwarted if the session content
is structured and can be parsed. Fortunately most web data takes
this form (e.g., in JSON orHTML). A generic solution is to parse the
entire session and prove that the revealed part belongs to the neces-
sary branch of a parse tree. But, under certain constraints that web
data generally satisfies, parsing the entire session is not necessary.
We propose a novel two-stage parsing schemewhere the prover pre-
processes the session content, and only parses the outcome that is
usually much smaller. We draw from the definition of equivalence
of programs, as used in programming language theory, to build a
formal framework to reason about the security of two-stage pars-
ing schemes. We provide several practical realizations for specific
grammars. Our definitions and constructions generalize to other
oracles too. For example, it could prevent a generic version of the
content-hidden attack mentioned in [65].

1.3 Implementation and evaluation

We designed and implemented DECO as a complete end-to-end
system. To demonstrate the system’s power, we implemented three
applications: 1) a confidentiality-preserving financial instrument

using smart contracts; 2) converting legacy credentials to anony-

mous credentials; and 3) verifiable claims against price discrimina-

tion.
Our experiments with these applications show that DECO is

highly efficient. For example, for TLS 1.2 in the WAN setting, on-
line time is 2.85s to perform the three-party handshake and 2.52s
for 2PC query execution. It takes 3-13s to generate zero-knowledge
proofs for the applications described above.More details are in Sec. 7.

Contributions. In summary, our contributions are as follows:

• We introduceDECO, a provably secure decentralized oracle scheme,
alongwith an implementation and performance evaluation.DECO
is the first oracle scheme for modern TLS versions (both 1.2 and
1.3) that doesn’t require trusted hardware or server-side modi-
fications. We provide an overview of the protocol in Sec. 3 and
specify the full protocol in Sec. 4.
• Selective opening: In Sec. 5.1, we introduce a broad class of
statements for TLS records that can be proven efficiently in zero-
knowledge. They allowusers to open only substrings of a session-
data commitment. The optimizations achieve substantial efficiency
improvement over generic ZKPs.
• Context-integrity attacks andmitigation: We identify a new
class of context-integrity attacks universal to privacy-preserving
oracles (e.g. [65]). In Sec. 5.2, we introduce our mitigation in-
volving a novel, efficient two-stage parsing scheme, along with
a formal security analysis, and several practical realizations.
• Security definitions and proofs: Oracles are a key part of
the smart contract ecosystem, but a coherent security definition
has been lacking. We formalize and strengthen existing oracle
schemes and present a formal security definition using an ideal
functionality in Sec. 3.2. We prove the functionality is securely
realized by our protocols in App. D.
• Applications and evaluation: In Sec. 6, we present three rep-
resentative applications that showcase DECO’s capabilities, and
evaluate them in Sec. 7.
• Legal and compliance considerations:DECO can export data
fromwebsites without their explicit approval or even awareness.
We discuss the resulting legal and compliance issues in Sec. 8.

2 BACKGROUND

2.1 Transport Layer Security (TLS)

We now provide necessary background on the TLS handshake and
record protocols on which DECO builds.

TLS is a family of protocols that provides privacy and data in-
tegrity between two communicating applications. Roughly speak-
ing, it consists of two protocols: a handshake protocol that sets up
the session using asymmetric cryptography, establishing shared
client and server keys for the next protocol, the record protocol,
in which data is transmitted with confidentiality and integrity pro-
tection using symmetric cryptography.

Handshake. In the handshake protocol, the server and client first
agree on a set of cryptographic algorithms (also known as a cipher
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suite). They then authenticate each other (client authentication op-
tional), and finally securely compute a shared secret to be used for
the subsequent record protocol.

DECO supports the recommended elliptic curveDHkey exchange
with ephemeral secrets (ECDHE [20]).

Record protocol. To transmit application-layer data (e.g., HTTP
messages) in TLS, the record protocol first fragments the applica-
tion data D into fixed sized plaintext records D = (D1, · · · ,Dn ).
Each record is usually padded to a multiple of blocks (e.g., 128
bits). The record protocol then optionally compresses the data, ap-
plies aMAC, encrypts, and transmits the result. Received data is de-
crypted, verified, decompressed, reassembled, and then delivered
to higher-level protocols. The specific cryptographic operations de-
pend on the negotiated ciphersuite.DECO supports the AES cipher
in two commonly used modes: CBC-HMAC and GCM. We refer
readers to [36] for how these primitives are used in TLS.

Differences between TLS 1.2 and 1.3. Throughout the paper we
focus on TLS 1.2 and discuss how to generalize our techniques to
TLS 1.3 in Sec. 4.1.2. Here we briefly note the major differences
between these two TLS versions. TLS 1.3 removes the support for
legacy non-AEAD ciphers. The handshake flow has also been re-
structured. All handshake messages after the ServerHello are now
encrypted. Finally, a different key derivation function is used. For
a complete description, see [64].

2.2 Multi-party computation

Consider a group of n parties P1, . . . ,Pn , each of whom holds
some secret si . Securemulti-party computation (MPC) allows them
to jointly compute f (si , · · · , sn) without leaking any information
other than the output of f , i.e., Pi learns nothing about sj,i . Secu-
rity for MPC protocols generally considers an adversary that cor-
rupts t players and attempts to learn the private information of
an honest player. Two-party computation (2PC) refers to the spe-
cial case of n = 2 and t = 1. We refer the reader to [52] for a full
discussion of the model and formal security definitions.

There are two general approaches to 2PC protocols. Garbled-
circuit protocols based on Yao [76] encode f as a boolean circuit, an
approach best-suited for bitwise operations (e.g., SHA-256). Other
protocols leverage threshold secret sharing and are best suited for
arithmetic operations. The functions we compute in this paper us-
ing 2PC, though, include both bitwise and arithmetic operations.
We separate them into two components, and use the optimized
garbled-circuit protocol from [75] for the bitwise operations and
the secret-sharing basedMtA protocol from [41] for the arithmetic
operations.

3 OVERVIEW

In this section we state the problem we try to solve with DECO

and present a high-level overview of its architecture.

3.1 Problem statement: Decentralized oracles

Broadly, we investigate protocols for building “oracles,” i.e., enti-
ties that can prove provenance and properties of online data. The
goal is to allow a prover P to prove to a verifier V that a piece of
data came from a particular website S and optionally prove state-
ments about such data in zero-knowledge, keeping the data itself

secret. Accessing the data may require private input (e.g., a pass-
word) from P and such private information should be kept secret
fromV as well.

We focus on servers running TLS, the most widely deployed
security protocol suite on the Internet. However, TLS alone does
not prove data provenance. Although TLS uses public-key signa-
tures for authentication, it uses symmetric-key primitives to pro-
tect the integrity and confidentiality of exchanged messages, using
a shared session key established at the beginning of each session.
Hence P, who knows this symmetric key, cannot prove statements
about cryptographically authenticated TLS data to a third party.

A web server itself could assume the role of an oracle, e.g., by
simply signing data. However, server-facilitated oracles would not
only incur a high adoption cost, but also put users at a disadvan-
tage: the web server could impose arbitrary constraints on the or-
acle capability. We are interested in a scheme where anyone can
prove provenance of any data she can access, without needing to
rely on a single, central point of control, such as the web server
providing the data.

We tackle these challenges by introducing decentralized oracles

that don’t rely on trusted hardware or cooperation fromweb servers.
The problem is much more challenging than for previous oracles,
as it precludes solutions that require servers to modify their code
or deploy new software, e.g., [65], or use of prediction markets,
e.g., [12, 62], while at the same time going beyond these previous
approaches by supporting proofs on arbitrary predicates over data.
Another approach, introduced in [78], is to use trusted execution
environments (TEEs) such as Intel SGX. The downside is that re-
cent attacks [24] may deter some users from trusting TEEs.

Authenticated data feeds for smart contracts. An important
application of oracle protocols is to construct authenticated data
feeds (ADFs, as coined in [78]), i.e., data with verifiable provenance
and correctness, for smart contracts. Protocols such as [78] gener-
ate ADFs by signing TLS data using a key kept secret in a TEE.
However, the security of this approach relies on that of TEEs. Us-
ing multiple TEEs could help achieve stronger integrity, but not
privacy. If a single TEE is broken, TLS session content, including
user credentials, can leak from the broken TEE.

DECO operates in a different model. Since smart contracts can’t
participate in 2PC protocols, they must rely on oracle nodes to par-
ticipate asV on their behalf. Therefore we envision DECO being
deployed in a decentralized oracle network similar to [39], where a
set of independently operated oracles are available for smart con-
tracts to use. Note that oracles running DECO are trusted only
for integrity, not for privacy. Smart contracts can further hedge
against integrity failures by querying multiple oracles and requir-
ing, e.g., majority agreement, as already supported in [39]. We em-
phasize that DECO’s privacy is preserved even all oracles are com-
promised. ThusDECO enables users to provide ADFs derived from
private data to smart contracts while hiding private data from ora-
cles.

3.2 Notation and definitions

We use P to denote the prover,V the verifier andS the TLS server.
We use letters in boldface (e.g., M) to denote vectors and Mi to
denote the ith element inM .
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Functionality FOracle between S, P and V

Input: The prover P holds some private input θs . The verifier V holds a query
template �ery and a statement Stmt.

Functionality:

• If at any point during the session, a message (sid, receiver,m) with receiver ∈
{S, P, V} is received from A , forward (sid,m) to receiver and forward any
responses to A .

• Upon receiving input (sid, �ery, Stmt) from V, send (sid, �ery, Stmt) to P .
Wait for P to reply with “ok” and θs .

• ComputeQ =�ery(θs ) and send (sid, Q ) to S and record its response (sid, R).
Send (sid, |Q |, |R |) to A .

• Send (sid, Q, R) to P and (sid, Stmt(R), S) to V .

Figure 1: The oracle functionality.

We model the essential properties of an oracle using an ideal
functionality FOracle in fig. 1. To separate parallel runs of FOracle,
all messages are tagged with a unique session id denoted sid. We
refer readers to [30] for details of ideal protocol execution.
FOracle accepts a secret parameter θs (e.g., a password) from P, a

query template�ery and a statement Stmt fromV. A query tem-
plate is a function that takes P’s secret θs and returns a complete
query, which contains public parameters specified byV . An exam-
ple query template would be �ery(θs ) = “stock price of GOOG
on Jan 1st, 2020 with API key = θs ”. The prover P can later prove
that the query sent to the server is well-formed, i.e., built from
the template, without revealing the secret. The statement Stmt is
a function thatV wishes to evaluate on the server’s response. Fol-
lowing the previous example, as the response R is a number, the
following statement would compare it with a threshold: Stmt(R) =
“R > $1, 000”.

After P acknowledges the query template and the statement (by
sending “ok” and θs ), FOracle retrieves a response R from S using
a query built from the template. We assume an honest server, so R
is the ground truth. FOracle sends Stmt(R) and the data source to
V .

As stated in Def. 3.1, we are interested in decentralized oracles
that don’t require any server-side modifications or cooperation,
i.e., S follows the unmodified TLS protocol.

Definition 3.1. Adecentralized oracle protocol for TLS is a three-
party protocol Prot = (ProtS ,ProtP , ProtV ) such that 1) Prot real-
izes FOracle and 2) ProtS is the standard TLS, possibly along with
an application-layer protocol.

Adversarialmodel and securityproperties.Weconsider a static,
malicious network adversaryA. Corrupted parties may deviate ar-
bitrarily from the protocol and reveal their states to A. As a net-
work adversary, A learns the message length from FOracle since
TLS is not length-hiding. We assumeP andV choose and agree on
an appropriate query (e.g., it should be idempotent for most appli-
cations) and statement according to the application-layer protocol
run by S.

For a given query Q , denote the server’s honest response by
S(Q). We require that security holds when either P or V is cor-
rupted. The functionality FOracle reflects the following security
guarantees:

• Prover-integrity:AmaliciousP cannot forge content provenance,
nor can she cause S to accept invalid queries or respond incor-
rectly to valid ones. Specifically, if the verifier inputs (�ery, Stmt)

and outputs (b,S), then P must have sent Q = �ery(θs ) to
S in a TLS session, receiving response R = S(Q) such that
b = Stmt(R).
• Verifier-integrity:AmaliciousV cannot causeP to receive incor-
rect responses. Specifically, if P outputs (Q,R) then R must be
the server’s response to queryQ submitted by P, i.e., R = S(Q).
• Privacy:AmaliciousV learns only public information (�ery,S)

and the evaluation of Stmt(R).

3.3 A strawman protocol

We focus on two widely used representative TLS cipher suites:
CBC-HMAC and AES-GCM. Our technique generalizes to other ci-
phers (e.g., Chacha20-Poly1305, etc.) as well. Throughout this sec-
tion we use CBC-HMAC to illustrate the ideas, with discussion of
GCM deferred to later sections.

TLS uses separate keys for each direction of communication. Un-
less explicitly specified, we don’t distinguish between the two and
use kEnc and kMAC to denote session keys for both directions.

In presenting our design of DECO, we start with a strawman
protocol and incrementally build up to the full protocol.

A strawman protocol. A strawman protocol that realizes FOracle
between (P,V) is as follows. P queries the server S and records
allmessages sent to and received from the server in Q̂ = (Q̂1, . . . , Q̂n )

and R̂ = (R̂1, . . . , R̂n), respectively. Let M̂ = (Q̂, R̂) and (kMAC, kEnc)

be the session keys.
She then proves in zero-knowledge that 1) each R̂i decrypts to

Ri ‖σi , a plaintext record and a MAC tag; 2) each MAC tag σi for Ri
verifies against kMAC; and 3) the desired statement evaluates to b
on the response, i.e., b = Stmt(R). Using the now standard notation
introduced in [28], P computes

pr = ZK-PoK{kEnc,R : ∀i ∈ [n],Dec(kEnc, R̂i ) = Ri ‖σi

∧ Verify(kMAC
,σi ,Ri ) = 1 ∧ Stmt(R) = b}.

She also proves that Q is well-formed as Q = �ery(θs ) simi-
larly in a proof pq and sends (pq ,pr , kMAC, M̂,b) toV.

Given that M̂ is an authentic transcript of the TLS session, the
prover-integrity property seems to hold. Intuitively, CBC-HMAC
ciphertexts bind to the underlying plaintexts, thus M̂ can be treated
as secure commitments [42] to the session data. That is, a given M̂

can only be opened (i.e., decrypted and MAC checked) to a unique
message. The binding property prevents P from opening M̂ to a
different message other than the original session with the server.

Unfortunately, this intuition is flawed. The strawman protocol
fails completely because it cannot ensure the authenticity of M̂ .
The prover P has the session keys, and thus she can include the
encryption of arbitrary messages in M̂ .

Moreover, the zero-knowledge proofs that P needs to construct
involve decrypting and hashing the entire transcript, which can be
prohibitively expensive. For the protocol to be practical, we need
to significantly reduce the cost.
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Prover P VerifierVServer S

Three-party handshake (Sec. 4.1)

Session keys k kP kV

�ery execution (Sec. 4.2)
Send Q =�ery(θs )

Receive response R

commit to (Q,R)

kV
verify R using kP and kV

Proof generation (Sec. 5)
θs
kP

Figure 2: An overview of the workflow inDECO. The protocol
has three phases: a three-party handshake phase to establish
session keys in a special format to achieve unforgeability, a query
execution phase whereP queries the server for data using a query
built from the template with her private parameters θs , and finally
a proof generation phase in which P proves that the query is
well-formed and the response satisfies the desired condition.

3.4 Overview of DECO

The critical failing of our strawman approach is that P learns the
session key before she commits to the session. One key idea in
DECO is to withhold the MAC key from P until after she commits.
The TLS session between P and S must still provide confidential-
ity and integrity. Moreover, the protocol must not degrade perfor-
mance below the requirements of TLS (e.g., triggering a timeout).

As shown in fig. 2, DECO is a three-phase protocol. The first
phase is a novel three-party handshake protocol in which the
prover P, the verifier V , and the TLS server S establish session
keys that are secret-shared between P andV. After the handshake
is a query execution phase during which P accesses the server
following the standard TLS protocol, but with help fromV. After
P commits to the query and response, V reveals her key share.
Finally, P proves statements about the response in a proof gener-
ation phase.

3.4.1 Three-party handshake. Essentially, P andV jointly act as a
TLS client. They negotiate a shared session key with S in a secret-
shared form. We emphasize that this phase, like the rest of DECO,
is completely transparent to S, requiring no server-side modifica-
tions.

For the CBC-HMAC cipher suite, at the end of the three-party
handshake, P and V receive kMAC

P
and kMAC

V
respectively, while

S receives kMAC
= kMAC
P
+kMAC
V

. As with the standard handshake,

both P and S get the encryption key kEnc.
Three-party handshake can make the aforementioned session-

data commitment unforgeable as follows. At the end of the session,
P first commits to the session in M̂ as before, then V reveals her
share kMAC

V
. FromV’s perspective, the three-party handshake pro-

tocol ensures that a fresh MAC key (for each direction) is used for
every session, despite the influence of a potential malicious prover,
and that the keys are unknown to P until she commits. Without
knowledge of the MAC key, P cannot forge or tamper with session
data before committing to it. The unforgeability of the session-data

commitment in DECO thus reduces to the unforgeability of the
MAC scheme used in TLS.

Other ciphersuites such as GCM can be supported similarly. In
GCM, a single key (for each direction) is used for both encryption
and MAC. The handshake protocol similarly secret-shares the key
betweenP andV. The handshake protocol are presented in Sec. 4.1.

3.4.2 �ery execution. Since the session keys are secret-shared,
as noted, P and V execute an interactive protocol to construct
a TLS message encrypting the query. P then sends the message
to S as a standard TLS client. For CBC-HMAC, they compute the
MAC tag of the query, while for GCM they perform authenticated
encryption. Note that the query is private to P and should not be
leaked to V . Generic 2PC would be expensive for large queries,
so we instead introduce custom 2PC protocols that are orders-of-
magnitude more efficient than generic solutions, as presented in
Sec. 4.2.

As explained previously, P commits to the session data M̂ be-
fore receivingV’s key share, making the commitment unforgeable.
Then P can verify the integrity of the response, and prove state-
ments about it, which we present now.

3.4.3 Proof generation. With unforgeable commitments, ifP opens
the commitment M̂ completely (i.e., reveals the encryption key)
thenV could easily verify the authenticity of M̂ by checkingMACs
on the decryption.

Revealing the encryption key for M̂ , however, would breach pri-
vacy: it would reveal all session data exchanged between P and S.
In theory,P could instead prove any statement Stmt over M̂ in zero
knowledge (i.e., without revealing the encryption key). Generic
zero-knowledge proof techniques, though, would be prohibitively
expensive for many natural choices of Stmt.

DECO instead introduces two techniques to support efficient
proofs for a broad, general class of statement, namely selective open-
ing of a TLS session transcript. Selective opening involves either
revealing a substring to V or redacting, i.e., excising, a substring,
concealing it fromV .

As an example, fig. 3 shows a simplified JSON bank statement
for Bob. Suppose Bob (P) wants to reveal his checking account bal-
ance toV . Revealing the decryption key for his TLS session would
be undesirable: it would also reveal the entire statement, including
his transactions. Instead, using techniques we introduce, Bob can
efficiently reveal only the substring in lines 5-7. Alternatively, if
he doesn’t mind revealing his savings account balance, he might
redact his transactions after line 7.

The two selective opening modes, revealing and redacting sub-
strings, are useful privacy protection mechanisms. They can also
serve as pre-processing for a subsequent zero-knowledge proof.
For example, Bob might wish to prove that he has an account with
a balance larger than $1000, without revealing the actual balance.
He would then prove in zero knowledge a predicate (“balance >
$1000”) over the substring that includes his checking account bal-
ance.

Selective opening alone, however, is not enough for many appli-
cations. This is because the context of a substring affects its mean-
ing. Without what we call context integrity, P could cheat and re-
veal a substring that falsely appears to prove a claim to V . For
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1 {"name ": "Bob",

2 "savings a/c": {

3 "balance ": $5000

4 },

5 "checking a/c": {

6 "balance ": $2000

7 },

8 "transactions ": {...}}

Figure 3: Example bank statement to demonstrate selective

opening and context-integrity attacks.

example, Bob might not have a balance above $1000. After view-
ing his bank statement, though, he might in the same TLS session
post a message to customer service with the substring "balance":
$5000 and then view his pending messages (in a form of reflection
attack). He could then reveal this substring to foolV .

Various sanitization heuristics on prover-supplied inputs toV ,
e.g., truncating session transcripts, could potentially prevent some
such attacks, but, like other forms of web application input saniti-
zation, are fragile and prone to attack [68].

Instead, we introduce a rigorous technique by which session
data are explicitly but confidentially parsed. We call this technique
zero-knowledge two-stage parsing. The idea is that P parses M̂ lo-
cally in a first stage and then proves to V a statement in zero
knowledge about constraints on a resulting substring. For exam-
ple, in our banking example, if bank-supplied key-value stores are
always escaped with a distinguished character λ, then Bob could
prove a correct balance by extracting via local parsing and reveal-
ing toV a substring "balance": $5000 preceded by λ. We show
for a very common class of web API grammars (unique keys) that
this two-phase approach yields much more efficient proofs than
more generic techniques.

Section 5 gives more details on proof generation in DECO.

4 THE DECO PROTOCOL

We now specify the full DECO protocol, which consists of a three-
party handshake in Sec. 4.1, followed by 2PC protocols for query
execution in Sec. 4.2, and a proof generation phase. We prove its
security in Sec. 4.3.

4.1 Three-party handshake

The goal of the three-party handshake (3P-HS) is to secret-share
between the prover P and verifier V the session keys used in a
TLS session with server S, in a way that is completely transparent
to S. We first focus on CBC-HMAC for exposition, then adapt the
protocol to support GCM.

As with the standard TLS handshake, 3P-HS is two-step: first,
P and V compute additive shares of a secret Z ∈ EC(Fp ) shared
with the server through a TLS-compatible key exchange protocol.
ECDHE is the recommended and the focus here; second, P andV
derive secret-shared session keys by securely evaluating the TLS-
PRF [36] with their shares of Z as inputs. The full protocol is spec-
ified in fig. 6. Below we give text descriptions so formal specifica-
tions are not required for understanding.

4.1.1 Step 1: key exchange. Let EC(Fp ) denote the EC group used
in ECDHE and G its generator.

The prover P initiates the handshake by sending a regular TLS
handshake request and a random nonce rc to S (in the ClientHello
message). On receiving a certificate, the server nonce rs , and a
signed ephemeral DH public key YS = sS ·G from S (in the Server-
Hello and ServerKeyExchange messages), P checks the certificate
and the signature and forwards them to V. After performing the
same check, V samples a secret sV and sends her part of the DH
public key YV = sV ·G to P , who then samples another secret sP
and sends the combined DH public key YP = sP ·G + YV to S.

Since the server S runs the standard TLS, S will compute a DH
secret as Z = sS · YP . P (and V) computes its share of Z as ZP =
sP · YS (and ZV = sV · YS ). Note that Z = ZP + ZV where + is
the group operation of EC(Fp ). Assuming the discrete logarithm
problem is hard in the chosen group, Z is unknown to either party.

4.1.2 Step 2: key derivation. Now that P and V have established
additive shares of Z (in the form of EC points), they proceed to
derive session keys by evaluating the TLS-PRF [36] keyed with the
x coordinate of Z .

A technical challenge here is to harmonize arithmetic opera-
tions (i.e., addition in EC(Fp )) with bitwise operations (i.e., TLS-
PRF) in 2PC. It is well-known that boolean circuits are not well-
suited for arithmetic in large fields. As a concrete estimate, an EC
Point addition resulting in just the x coordinate involves 4 subtrac-
tions, one modular inversion, and 2 modular multiplications. An
estimate of the AND complexity based on the highly optimized cir-
cuits of [34] results in over 900,000 AND gates just for the subtrac-
tions, multiplications, andmodular reductions—not even including
inversion, which would require running the Extended Euclidean
algorithm inside a circuit.

Due to the prohibitive cost of adding EC points in a boolean
circuit, P and V convert the additive shares of an EC point in
EC(Fp ) to additive shares of its x-coordinate in Fp , using the ECtF
protocol presented below. Then the boolean circuit just involves
adding two numbers in Fp , which can be done with only ∼ 3|p |
AND gates, that is ∼768 AND gates in our implementation where
p is 256-bit.

ECtF: Converting shares in EC(Fp ) to shares in Fp . The inputs
to an ECtF protocol are two EC points P1, P2 ∈ EC(Fp ), denoted
Pi = (xi ,yi ). Suppose (xs ,ys ) = P1 ⋆ P2 where ⋆ is the EC group
operation, the output of the protocol is α , β ∈ Fp such that α + β =
xs . Specifically, for the curve we consider, xs = λ2 − x1 − x2 where
λ = (y2−y1)/(x2−x1). Shares of the ys can be computed similarly but
we omit that since TLS only uses the xs .

ECtF uses a Multiplicative-to-Additive (MtA) share-conversion
protocol as a building block. We use α , β := MtA(a,b) to denote a
run ofMtA betweenAlice and Bobwith inputs a andb respectively.
At the end of the run, Alice and Bob receive α and β such that
a · b = α + β . The protocol can be generalized to handle vector
inputs without increasing the communication complexity. Namely
for vectors a,b ∈ Fnp , if α , β := MtA(a,b), then 〈a,b〉 = α + β . See,
e.g., [41] for a Paillier [61]-based construction.

Now we specify the protocol of ECtF. ECtF has two main ingre-
dients. Let [a] denote a 2-out-of-2 sharing of a, i.e., [a] = (a1,a2)
such that party i has ai for i ∈ {1, 2} while a = a1+a2. The first in-
gredient is share inversion: given [a], compute [a−1]. As shown in
[41], we can use the inversion protocol of Bar-Ilan and Beaver [17]
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together with MtA as follows: party i samples a random value ri
and executesMtA to compute δ1, δ2 := MtA((a1, r1), (r2,a2)). Note
that δ1 + δ2 = a1 · r2 + a2 · r1. Party i publishes vi = δi + ai · ri
and thus both parties learn v = v1 + v2. Finally, party i outputs
βi = ri · v

−1. The protocol computes a correct sharing of a−1 be-
cause β1 + β2 = a−1. Moreover, the protocol doesn’t leak a to any
party assuming MtA is secure. In fact, party i’s view consists of
(a1 +a2)(r1 + r2), which is uniformly random since ri is uniformly
random.

The second ingredient is sharemultiplication: compute [ab]given
[a], [b]. [ab] can be computedusingMtA as follows: parties execute
MtA to compute α1,α2 such that α1 + α2 = a1 · b2 + a2 · b2. Then,
party i outputsmi = αi + ai · yi . The security and correctness of
the protocol can be argued similarly as above.

Combining these two ingredients, fig. 7 in theAppendix presents
the ECtF protocol, with communication complexity 8 ciphertexts.

Secure evaluation of the TLS-PRF. Having computed shares of
the x-coordinate of Z , the so called premaster secret in TLS, in
ECtF, P andV evaluate the TLS-PRF in 2PC to derive session keys.
Beginning with the SHA-256 circuit of [29], we hand-optimized
the TLS handshake circuit resulting in a circuit with total AND
complexity of 779,213.

Adapting to support GCM. For GCM, a single key (for each di-
rection) is used for both encryption and MAC. Adapting the above
protocol to support GCM in TLS 1.2 is straightforward. The first
step would remain identical, while output of the second step needs
to be truncated, as GCM keys are shorter.

Adapting to TLS 1.3. The specification of TLS 1.3 [64] has been
recently published. To support TLS 1.3, the 3P-HS protocol must
be adapted to a new handshake flow and a different key derivation
circuit. Notably, all handshake messages after the ServerHello are
now encrypted. A naïve strategy would be to decrypt them in 2PC,
which would be costly as certificates are usually large. However,
thanks to the key independence property of TLS 1.3 [37], we can
construct a 3P-HS protocol of similar complexity to that for TLS
1.2, as outlined in App. C.1.

4.2 Query execution

After the handshake, the prover P sends her queryQ to the server
S as a standard TLS client, butwith help from the verifierV . Specif-
ically, since session keys are secret-shared, the two parties need to
interact and execute a 2PC protocol to construct TLS records en-
cryptingQ . Although generic 2PCwould in theory suffice, it would
be expensive for large queries. We instead introduce custom 2PC
protocols that are orders-of-magnitude more efficient.

We first focus on one-round sessions where P sends all queries
to S before receiving any response. Most applications of DECO,
e.g., proving provenance of content retrieved via HTTP, are one-
round. ExtendingDECO tomulti-round sessions is discussed in App. C.

4.2.1 CBC-HMAC. Recall that P and V hold shares of the MAC
key, while P holds the encryption key. To construct TLS records
encrypting Q—potentially private to P, the two parties first run
a 2PC protocol to compute the HMAC tag τ of Q , and then P en-
crypts Q ‖τ locally and sends the ciphertext to S.

LetH denote SHA-256. Recall that theHMACofmessagemwith
key k is

HMACH(k,m) = H((k ⊕ opad) ‖ H((k ⊕ ipad) ‖m)
︸                ︷︷                ︸

inner hash

).

Adirect 2PC implementationwould be expensive for large queries,
as it requires hashing the entire query in 2PC to compute the inner
hash. The key idea in our optimization is to make the computation
of the inner hash local to P (i.e., without 2PC). If P knew k ⊕ ipad,
she could compute the inner hash. We cannot, though, simply give
k ⊕ ipad to P , as she could then learn k and forge MACs.

Our optimization exploits theMerkle–Damgård structure in SHA-
256. Supposem1 andm2 are two correctly sized blocks. ThenH(m1‖m2)

is computed as fH(fH(IV,m1),m2) where fH denotes the one-way
compression function of H, and IV the initial vector.

After the three-party handshake, P andV execute a simple 2PC
protocol to compute s0 = fH(IV, k

MAC ⊕ ipad), and reveal it to P .
To compute the inner hash of a message m, P just uses s0 as the
IV to compute a hash of m. Revealing s0 does not reveal kMAC,
as fH is assumed to be one-way. To compute HMAC(k,m) then
involves computing the outer hash in 2PC on the inner hash, a
much shorter message. Thus, we manage to reduce the amount of
2PC computation to a few blocks regardless of query length, as
opposed to up to 256 SHA-2 blocks in each record with generic
2PC. The protocol is formally specified in fig. 8.

4.2.2 AES-GCM. For GCM, P and V perform authenticated en-
cryption ofQ . 2PC-AES is straightforward with optimized circuits
(e.g., [11]), but computing tags for large queries is expensive as
it involves evaluating long polynomials in a large field for each

record. Our optimized protocol makes polynomial evaluation local
via precompution. We refer readers to App. B.2 for details. Since
2PC-GCM involves not only tag creation but also AES encryption,
it incurs higher computational cost and latency than CBC-HMAC.

In App. C.4, we present a highly efficient alternative protocol
that avoids post-handshake 2PC protocols altogether, with addi-
tional trust assumptions.

4.3 Full protocol

After querying the server and receiving a response, P commits to
the session by sending the ciphertexts toV, and receivesV’sMAC
key share. Then P can verify the integrity of the response, and
prove statements about it. Figure 4 specifies the fullDECO protocol
for CBC-HMAC (the protocol for GCM is similar and described
later).

For clarity,we abstract away the details of zero-knowledge proofs
in an ideal functionalityFZK like that in [45]. On receiving (“prove”,x,w)
from P , where x and w are private and public witnesses respec-
tively, FZK sends w and the relationship π (x,w) ∈ {0, 1} (defined
below) to V . Specifically, for CBC-HMAC, x,w, π are defined as
follows: x = (kEnc,θs ,Q,R) and w = (Q̂, R̂, kMAC,b). The relation-
ship π (x,w) outputs 1 if and only if (1) Q̂ (and R̂) is the CBC-HMAC
ciphertext of Q (and R) under key kEnc, kMAC; (2) �ery(θs ) = Q ;
and (3) Stmt(R) = b . Otherwise it outputs 0.

Assuming functionalities for secure 2PC and ZKPs, it can be
shown that ProtDECO UC-securely realizes FOracle for malicious
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ProtDECO

ProtS : follow the standard TLS protocol.

ProtP and ProtV :
• V sends (sid, �ery, Stmt) to P , where�ery is the query template and Stmt

the statement to be proven over the response to P .
• P examines them and chooses whether to proceed. If so, P starts the handshake.
• (3P-HS) P, V execute the three-party handshake protocol. P gets the encryp-

tion key kEnc and a share of the MAC key kMAC
P

, while V gets the other share

kMAC
V

.
• (Query) P computes a query using the template Q = �ery(θs ). P invokes

2PC-HMAC with V to compute a tag τ . P sends (sid, Q̂ = Enc(kEnc, Q ‖τ )) to
S.

• (Commit and verify) After receiving a response (sid, R̂) from S, P sends

(sid, Q̂, R̂, kMAC
P
) to V as a commitment to the session data. After receiving

(sid, kMAC
V
) from V , P computes kMAC

= kMAC
V

+ kMAC
P

, decrypts R ‖τ =

Dec(kEnc, R̂), and verifies τ against kMAC .
• (Proof gen) Let b = Stmt(R), x = (kEnc, θs , Q, R) and w = (Q̂, R̂, kMAC, b ).
P sends (sid, “prove”, x, w ) to FZK and outputs (Q, R). If V receives

(sid, “proof”, 1, (Q̂, R̂, k̂MAC, b )) from FZK , V checks if k̂MAC
= kMAC
P
+ kMAC
V

.
If so, V outputs (sid, b, S).

Figure 4: TheDECO protocol. We only show the CBC-HMAC

variant for clarify, while the GCM variant is described

in Sec. 4.3.

adversaries, as stated in Theorem 4.1. We provide a simulation-
based proof (sketch) in App. D.

Theorem 4.1 (Security of ProtDECO). Assuming the discrete

log problem is hard in the group used in the three-party handshake,

and that f (the compression function of SHA-256) is an random ora-

cle, ProtDECO UC-securely realizes FOracle in the (F2PC, FZK)-hybrid

world, against a static malicious adversary with abort.

The protocol for GCM has a similar flow. We’ve specified the
GCM variants of the three-party handshake and query construc-
tion protocols. Unlike CBC-HMAC, GCM is not committing [42]:
for a given ciphertext C encrypted with key k, one knowing k can
efficiently find k′ , k that decryptsC to a different plaintext while
passing the integrity check. To prevent such attacks, we require
P to commit to her key share kP before learning V’s key share.
In the proof generation phase, in addition to proving statements
about Q and R, P needs to prove that the session keys used to de-
crypt Q̂ and R̂ are valid against the commitment to kP . Proof of
the security of the GCM variant is like that for CBC-HMAC.

5 PROOF GENERATION

Recall that the prover P commits to the ciphertext M̂ of a TLS ses-
sion and proves toV that the plaintextM satisfies certain proper-
ties. Without loss of generality, we assume M̂ andM contain only
one TLS record, and henceforth call them the ciphertext record and
the plaintext record. Multi-record sessions can be handled by re-
peating the protocol for each record.

Proving only the provenance ofM is easy: just reveal the encryp-
tion keys. But this sacrifices privacy. Alternatively, P could prove
any statement aboutM using general zero-knowledge techniques.
But such proofs are often expensive.

In this section, we present two classes of statements optimized
for what are likely to be the most popular applications: reveal-
ing only a substring of the response while proving its provenance

(Sec. 5.1), or further proving that the revealed substring appears in
a context expected byV (Sec. 5.2).

5.1 Selective opening

We introduce selective opening, techniques that allow P to effi-
ciently reveal or redact substrings in the plaintext. Suppose the
plaintext record is composed of chunks M = (B1, · · · ,Bn) (details
of chunking are discussed shortly). Selective opening allows P to
prove that the ith chunk of M is Bi , without revealing the rest of
M ; we refer to this as Reveal mode. It can also prove that M−i is
the same as M but with the chunks removed. We call this Redact
mode. Bothmodes are simple, but useful for practical privacy goals.
The granularity of selective opening depends on the cipher suite,
which we now discuss.

5.1.1 CBC-HMAC. Recall that for proof generation, P holds both
the encryption and MAC keys kEnc and kMAC, while V only has
the MAC key kMAC. Our performance analysis assumes a cipher-
suite with SHA-256 and AES-128, which matches our implementa-
tion, but the techniques are applicable to other parameters. Recall
that MAC-then-encrypt is used: a plaintext record M contains up
to 1024 AES blocks of data and 3 blocks of MAC tag σ , which we
denote as M = (B1, . . . ,B1024,σ ) where σ = (B1025,B1026,B1027).
M̂ is a CBC encryption of M , consisting of the same number of
blocks: M̂ = (B̂1, . . . , B̂1024, σ̂ ) where σ̂ = (B̂1025, B̂1026, B̂1027).

Revealing a TLS record.A naïve way to prove that M̂ encryptsM
without revealing kEnc is to prove correct encryption of each AES
block in ZKP. However, this would require up to 1027 invocations
of AES in ZKP, resulting in impractical performance.

Leveraging the MAC-then-encrypt structure, the same can be
done using only 3 invocations of AES in ZKP. The idea is to prove
that the last few blocks of M̂ encrypt a tag σ and reveal the plain-
text directly. Specifically, P computes πσ = ZK-PoK{kEnc : σ̂ =
CBC(kEnc,σ )} and sends (M,πσ ) to V. Then V verifies π and
checks the MAC tag overM (note thatV knows the MAC key.) Its
security relies on the collision-resistance of the underlying hash
function in HMAC, i.e., P cannot find M ′ , M with the same tag
σ .

Revealing a recordwith redacted blocks. Suppose the ith block
contains sensitive information that P wants to redact. A direct
strategy is to prove thatBi− = (B1, · · · ,Bi−1) andBi+ = (Bi+1, · · · ,Bn)
form the prefix and suffix of the plaintext encrypted by M̂ , by com-
putingπσ (see above) andZK-PoK{Bi : σ = HMAC(kMAC,Bi−‖Bi ‖Bi+)}.

This is expensive though as it would involve 3 AES and 256 SHA-
256 compression in ZKP.

Leveraging theMerkle-Damgård structure of SHA-256 (c.f. Sec. 4.2.1),
several optimization is possible. Let f denote the compression func-
tion of SHA-256, and si−1 the state after applying f on Bi−. First,
if both si−1 and si can be revealed, e.g., when Bi contains high-
entropy data such as API keys, the above goal can be achieved us-
ing just 1 SHA-256 in ZKP. To do so, P computes π = ZK-PoK{Bi :
f (si−1,Bi ) = si } and sends (π , si−1, si ,Bi−,Bi+) toV , who then 1)
checks si−1 by recomputing it fromBi−; 2) verifies π ; and 3) checks
the MAC tag σ by recomputing it from si and Bi+. Assuming Bi
is high entropy, revealing si−1 and si doesn’t leak Bi since f is
one-way.
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On the other hand, if both si−1 and si cannot be revealed to V
(e.g., when brute-force attacks against Bi is feasible), we can still
reduce the cost by having P redact a prefix (or suffix) of the record
containing the block Bi . The cost incurred then is 256 − i SHA-2
hashes in ZKP. We relegate the details to App. A.2. Generally ZKP
cost is proportional to record sizes so TLS fragmentation can also
lower the cost by a constant factor.

5.1.2 GCM. Unlike CBC-HMAC, revealing a block is very efficient
in GCM. First, P reveals AES(k, IV ) and AES(k, 0), with proofs of
correctness in ZK, to allowV to verify the integrity of the cipher-
text. Then, to reveal the ith block, P just reveals the encryption of
the ith counter Ci = AES(k, inci (IV )) with a correctness proof.V
can decrypt the ith block as B̂i⊕Ci . IV is the public initial vector for
the session, and inci (IV ) denotes incrementing IV for i times (the
exact format of inc is immaterial.) To reveal a TLS record, P repeat
the above protocol for each block. We defer details to App. B.3.

In summary, CBC-HMAC allows efficient selective revealing at
the TLS record-level and redaction at block level in DECO, while
GCM allows efficient revealing at block level. Selective opening
can also serve as pre-processing to reduce the input length for a
subsequent zero-knowledge proof,whichwewill illustrate in Sec. 6
with concrete applications.

5.2 Context integrity by two-stage parsing

For many applications, the verifier V may need to verify that the
revealed substring appears in the right context. We refer to this
property as context integrity. In this section we present techniques
forV to specify contexts and for P to prove context integrity effi-
ciently.

For ease of exposition, our description below focuses on the re-
vealing mode, i.e., P reveals a substring of the server’s response to
V . We discuss how redaction works in Sec. 5.2.3.

5.2.1 Specification of contexts. Our techniques for specifying con-
texts assume that the TLS-protected data sent to and from a given
server S has a well-defined context-free grammar G, known to
both P andV . In a slight abuse of notation, we let G denote both
a grammar and the language it specifies. Thus, R ∈ G denotes a
string R in the language given by G. We assume that G is unam-

biguous, i.e., every R ∈ G has a unique associated parse-tree TR .
JSON and HTML are examples of two widely used languages that
satisfy these requirements, and are our focus here.

When P then presents a substring Ropen of some response R

from S, we say that Ropen has context integrity if Ropen is produced
in a certain way expected byV . Specifically,V specifies a set S of
positions in which she might expect to see a valid substring Ropen
in R. In our definition, S is a set of paths from the root in a parse-
tree defined by G to internal nodes. Thus s ∈ S , which we call a
permissible path, is a sequence of non-terminals. Let ρR denote the
root ofTR (the parse-tree of R in G). We say that a string Ropen has
context-integrity with respect to (R, S) if TR has a subtree whose
leaves yield (i.e. concatenate to form) the string Ropen , and that
there is a path s ∈ S from ρR to the root of the said subtree.

Formally, we define context integrity in terms of a predicate
CTXG in Def. 5.1. At a high level, our definition is reminiscent of
the production-induced context in [67].

Definition 5.1. Given a grammar G on TLS responses, R ∈ G,
a substring Ropen of R, a set S of permissible paths, we define a
context function CTXG as a boolean function such that CTXG :
(S,R,Ropen) 7→ true iff ∃ a sub-tree TRopen of TR with a path s ∈ S

from ρTR to ρTRopen and TRopen yields Ropen . Ropen is said to have

context integrity with respect to (R, S) if CTXG(S,R,Ropen) = true.

As an example, consider the JSON string J in fig. 3. JSON con-
tains (roughly) the following rules:

Start → object object → { pairs }

pair → ‘‘key’’ : value pairs → pair | pair, pairs

key → chars value → chars | object

In that example, V was interested in learning the derivation
of the pair pbalance with key ‘‘balance’’ in the object given
by the value of the pair pchecking with key ‘‘checking a/c’’.
Each of these non-terminals is the label for a node in the parse-
tree TJ . The path from the root Start of TJ to pchecking requires
traversing a sequence of nodes of the form Start → object →

pairs∗ → pchecking , where pairs∗ denotes a sequence of zero
or more pairs. So S is the set of such sequences and Ropen is the
string ‘‘checking a/c’’: {‘‘balance’’: $2000}.

5.2.2 Two-stage parsing. Generally, proving Ropen has context in-
tegrity, i.e., CTXG(S,R,Ropen) = true, without directly revealing
R would be expensive, since computing CTXG may require com-
puting TR for a potentially long string R. However, we observed
that under certain assumptions that TLS-protected data generally
satisfies, much of the overhead can be removed by having P pre-

process R by applying a transformation Trans agreed upon by P
andV , and prove that Ropen has context integrity with respect to
R′ (a usually much shorter string) and S ′ (a set of permissible paths
specified byV based on S and Trans).

Based on this observation, we introduce a two-stage parsing scheme

for efficiently computing Ropen and proving CTXG(S,R,Ropen) =

true. Suppose P and V agree upon G, the grammar used by the
web server, and a transformation Trans. Let G′ be the grammar
of strings Trans(R) for all R ∈ G. Based on Trans, V specifies
permissible paths S ′ and a constraint-checking function consG,G′ .
In the first stage, P: (1) computes a substring Ropen of R by pars-
ing R (such that CTXG(S,R,Ropen) = true) (2) computes another
string R′ = Trans(R). In the second stage, P proves to V in zero-
knowledge that (1) consG,G′(R,R

′) = true and (2)CTXG′(S
′,R′,Ropen) =

true. Note that in addition to public parametersG,G′, S, S ′, Trans, consG,G′ ,
the verifier only sees a commitment to R, and finally, Ropen.

This protocol makes the zero-knowledge computation signifi-
cantly less expensive by deferring actual parsing to a non-verifiable
computation. In otherwords, the computation ofCTXG′(S

′,R′,Ropen)

and consG,G′(R,R
′) can bemuchmore efficient than that ofCTXG(S,R,Ropen).

We formalize the correctness condition for the two-stage pars-
ing in an operational semantics rule in Def. 5.2. Here, 〈f ,σ〉 de-
notes applying a function f on input σ , while P

C denotes that if
the premise P is true, then the conclusionC is true.

Definition 5.2. Given a grammar G, a context function and per-
missible paths CTXG(S, · , · ), a transformation Trans, a grammar
G′ = {R′ : R′ = Trans(R),R ∈ G} with context function and
permissible pathsCTXG′(S

′, · , · ) and a function consG,G′ , we say
(consG,G′, S

′) are correct w.r.t. S , if for all (R,R′,Ropen) such that
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R ∈ G, booleans b the following rule holds:

〈consG,G′, (R,R
′)〉 ⇒ true 〈CTXG′ , (S

′,R′,Ropen)〉 ⇒ b

〈CTXG , (S,R,Ropen)〉 ⇒ b
.

Below,we focus on a grammar thatmostDECO applications use,
and present concrete constructions of two-stage parsing schemes.

5.2.3 DECO focus: Key-value grammars. A broad class of data for-
mats, such as JSON, have a notion of key-value pairs. Thus, they
are our focus in the current version of DECO.

A key-value grammar G produces key-value pairs according to
the rule, “pair → start key middle value end”, where start,
middle and end are delimitors. For such grammars, an array of op-
timizations can greatly reduce the complexity for proving context.
We discuss a few such optimizations below, with formal specifica-
tion relegated to App. F.

Revelation for a globally unique key. For a key-value grammar
G, set of paths S , if for an R ∈ G, a substring Ropen satisfying
context-integrity requires that Ropen is parsed as a key-value pair
with a globally unique key K (formally defined in App. F.4), Ropen
simply needs to be a substring of R and correctly be parsed as a
pair. Specifically, Trans(R) outputs a substring R′ of R containing
the desired key, i.e., a substring of the form “start K middle

value end” and P can outputRopen = R′. G′ can be defined by the
rule SG′ → pair where SG′ is the start symbol in the production
rules for G′. Then (1) consG,G′(R,R

′) checks that R′ is a substring
of R and (2) for S ′ ={SG′}, CTXG′(S

′,R′,Ropen) checks that (a) R′ ∈
G′ and (b) Ropen = R′. Globally unique keys arise in Sec. 6.2 when
selectively opening the response for age.

Redaction in key-value grammars. Thus far, our description of
two-stage parsing assumes the Reveal mode in which P reveals a
substring Ropen of R to V and proves that Ropen has context in-
tegrity with respect to the set of permissible paths specified byV.
In the Redactmode, the process is similar, but instead of revealing
Ropen in the clear, P generates a commitment to Ropen using tech-
niques from Sec. 5.1 and reveals R, with Ropen removed, for e.g. by
replacing its position with a dummy character.

6 APPLICATIONS

DECO can be used for any oracle-based application. To showcase
its versatility, we have implemented and evaluated three applica-
tions that leverage its various capabilities: 1) a confidential finan-
cial instrument realized by smart contracts; 2) converting legacy
credentials to anonymous credentials; and 3) privacy-preserving
price discrimination reporting. Due to lack of space, we only present
concrete implementation details for the first application, and re-
fer readers to App. E for others. Evaluation results are presented
in Sec. 7.2.

6.1 Confidential financial instruments

Financial derivatives are among the most commonly cited smart
contract applications [32, 60], and exemplify the need for authen-
ticated data feeds (e.g., stock prices). For example, one popular fi-
nancial instrument that is easy to implement in a smart contract is
a binary option [9]. This is a contract between two parties betting
on whether, at a designated future time, e.g., the close of dayD, the

price P∗ of some asset N will equal or exceed a predetermined tar-
get price P, i.e., P∗ ≥ P. A smart contract implementing this binary
option can call an oracle O to determine the outcome.

In principle, O can conceal the underlying asset N and target
price P for a binary option on chain. It simply accepts the option
details off chain, and reports only a bit specifying the outcome
Stmt := P∗ ≥? P. This approach is introduced in [48], where it
is referred to as a Mixicle.

A limitation of a basicMixicle construction is that O itself learns
the details of the financial instrument. Prior to DECO, only oracle
services that use TEE (e.g., [78]) could conceal queries from O. We
now show how DECO can support execution of the binary option
without O learning the details of the financial instrument, i.e., N or

P1.
The idea is that the option winner plays the role of P , and ob-

tains a signed result of Stmt from O, which plays the role of V .
We now describe the protocol and its implementation.

Protocol. Let {skO , pkO } denote the oracles’ key pair. In our scheme,
a binary option is specified by an asset name N, threshold price P,
and settlement date D. We denote the commitment of a message
M by CM = com(M, rM ) with a witness rM . Figure 5 shows the
workflow steps in a confidential binary option:

1) Setup: Alice and Bob agree on the binary option {N,P,D}
and create a smart contract SC with identifier IDSC , The contract
contains pkO , addresses of the parties, and commitments to the
option {CN, CP,CD} with witnesses known to both parties. They
also agree on public parameters θp (e.g., the URL to retrieve asset
prices).

2) Settlement: Suppose Alice wins the bet. To claim the payout,
she uses DECO to generate a ZK proof that the current asset price
retrieved matches her position. Alice and O execute theDECO pro-
tocol (with O acting as the verifier) to retrieve the asset price from
θp (the target URL). We assume the response contains (N∗, P∗,D∗).
In addition to the ZK proof in DECO to prove origin θp , Alice
proves the following statement:

ZK-PoK{P,N∗, P∗,D∗, rN, rP, rD : (P ≤ P∗) ∧

CN = com(N∗, rN) ∧ CP = com(P, rP) ∧ CD = com(D∗, rD)}.

Upon successful proof verification, the oracle returns a signed
statement with the contract ID, S = Sig(skO , IDSC ).

3) Payout: Alice provides the signed statement S to the contract,
which verifies the signature and pays the winning party.

Alice and Bob need to trust O for integrity, but not for privacy.
They can further hedge against integrity failure by using multiple
oracles, as explained in Sec. 3.1. Decentralizing trust over oracles
is a standard and already deployed technique [39]. We emphasize
that DECO ensures privacy even if all the oracles are malicious.

Implementationdetails. Figure 5 shows the request and response
of a stock price API. Let R̂ andR denote the response ciphertext and
the plaintext respectively. To settle an option, P proves toV that
R contains evidence that he won the option, using the two-stage
parsing scheme introduced in Sec. 5.2. In the first stage, P parses R
locally and identifies the smallest substring of R that can convince

1The predicate direction ≥? or ≤? can be randomized. Concealing winner and loser
identities and payment amounts is discussed in [48]. Additional steps can be taken to
conceal other metadata, e.g., the exact settlement time.
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Alice Bob

Oracle O Contract SC

1. Set up contract
SC, shared ran-

domness rN, rP, rD

IDSC, pkO, {CN, CP, CD }

2. ZKP using DECO

S = Sig(skO, IDSC )

3. Send S

Receive payout

> GET /query ?function =GLOBAL_QUOTE &

֒→ symbol= GOOGL

Host : www.alphavantage .co

>

{

"Global Quote ": {

"01. symbol": "GOOGL" ,

"05. price": "1157.7500" ,

"07. day": "2019-07-16"

}

}

Figure 5: Two partiesAlice and Bob execute a confidential bi-

nary option. Alice usesDECO to access a stock price API and

convince O she has won. Examples of request and response

are shown to the right. Text in red is sensitive information

to be redacted.

V . E.g., for stock prices, Rprice = "05. price": "1157.7500" suf-
fices. In the second stage, P proves knowledge of (Rprice, P, rP) in

ZK such that 1) Rprice is a substring of the decryption of R̂; 2) Rprice
starts with "05. price"; 3) the subsequent characters form a float-
ing point number P∗ and that P∗ ≥ P; 4) com(P, rP) = CP .

This two-stage parsing is secure assuming the keys are unique
and the key "05. price" is followed by the price, making the
grammar of this response a key-value grammar with unique keys,
as discussed in Sec. 5.2. Similarly, P proves that the stock name
and date in R match the commitments. With the CBC-HMAC ci-
phersuite, the zero-knowledge proof circuit involves redacting an
entire record (408 bytes), computing commitments, and string pro-
cessing.

6.2 Legacy credentials to anonymous
credentials: Age proof

User credentials are often inaccessible outside a service provider’s
environment. Some providers offer third-partyAPI access via OAuth
tokens, but such tokens reveal user identifiers. DECO allows users
holding credentials in existing systems (what we call legacy cre-

dentials) to prove statements about them to third parties (verifiers)
anonymously. Thus, DECO is the first system that allows users to
convert any web-based legacy credential into an anonymous cre-
dential without server-side support [65] or trusted hardware [78].

We showcase an example where a student proves her/his age is
over 18 using credentials (demographic details) stored on a Univer-
sity website. A student can provide this proof of age to any third
party, such as a state issuing a driver’s license or a hospital seek-
ing consent for a medical test. We implement this example using
the AES-GCM cipher suite and two-stage parsing (See fig. 10) with
optimizations based on unique keys as in Sec. 5.2.

6.3 Price discrimination

Price discrimination refers to selling the same product or service at
different prices to different buyers. Ubiquitous consumer tracking

Table 1: Run time (in ms) of 3P-HS and query execution pro-

tocols.

LAN WAN
Online Offline Online Offline

3P-Handshake TLS 1.2 only 368.5 (0.6) 1668 (4) 2850 (20) 10290 (10)
2PC-HMAC TLS 1.2 only 133.8 (0.5) 164.9 (0.4) 2520 (20) 3191 (8)
2PC-GCM (256B) 1.2 and 1.3 36.65 (0.02) 392 (8) 1208.5 (0.2) 12010 (70)
2PC-GCM (512B) 1.2 and 1.3 53.0 (0.5) 610 (10) 2345 (1) 12520 (70)
2PC-GCM (1KB) 1.2 and 1.3 101.9 (0.5) 830 (20) 4567 (4) 14300 (200)
2PC-GCM (2KB) 1.2 and 1.3 204.7 (0.9) 1480 (30) 9093.5 (0.9) 18500 (200)

enables online shopping and booking websites to employ sophisti-
cated price discrimination [72], e.g., adjusting prices based on cus-
tomer zip codes [47]. Price discrimination can lead to economic
efficiency [59], and is thus widely permissible under existing laws.

In the U.S., however, the FTC forbids price discrimination if it
results in competitive injury [40], while new privacy-focused laws
in Europe, such as the GDPR, are bringing renewed focus to the le-
gality of the practice [21]. Consumers in any case generally dislike
being subjected to price discrimination. Currently, however, there
is no trustworthy way for users to report online price discrimina-
tion.

DECO allows a buyer tomake a verifiable claim about perceived
price discrimination by proving the advertised price of a good is
higher than a threshold, while hiding sensitive information such
as name and address. We implement this example using the AES-
GCM cipher suite for the TLS session and reveal 24 AES blocks con-
taining necessary order details and the request URL (See fig. 11).

7 IMPLEMENTATION AND EVALUATION

In this section, we discuss implementation details and evaluation
results for DECO and our three applications.

7.1 DECO protocols

We implemented the three-party handshake protocol (3P-HS) for
TLS 1.2 and query execution protocols (2PC-HMACand 2PC-GCM)
in about 4700 lines of C++ code. We built a hand-optimized TLS-
PRF circuit with total AND complexity of 779,213. We also used
variants of the AES circuit from [11]. Our implementation uses
Relic [13] for the Paillier cryptosystem and the EMP toolkit [74]
for the maliciously secure 2PC protocol of [75].

We integrated the three-party handshake and 2PC-HMAC pro-
tocols with mbedTLS [14], a popular TLS implementation, to build
an end-to-end system. 2PC-GCM can be integrated to TLS simi-
larly with more engineering effort. We evaluated the performance
of 2PC-GCM separately. The performance impact of integration
should be negligible. We did not implement 3P-HS for TLS 1.3, but
we conjecture the performance should be comparable to that for
TLS 1.2, since the circuit complexity is similar (c.f. Sec. 4.1.2).

Evaluation. We evaluated the performance of DECO in both the
LAN and WAN settings. Both the prover and verifier run on a
c5.2xlarge AWS node with 8 vCPU cores and 16GB of RAM. We
located the two nodes in the same region (but different availability
zones) for the LAN setting, but in two distinct data centers (in Ohio
and Oregon) in theWAN setting. The round-trip time between two
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Table 2: Costs of generating and verifying ZKPs in proof-

generation phase of DECO for applications in Sec. 6.

Binary Option Age Proof Price Discrimination

prover time 12.97 ± 0.04s 3.67 ± 0.02s 12.68 ± 0.02s
verifier time 0.01s 0.01s 0.05s

proof size 861B 574B 1722B
# constraints 617k 164k 535k

memory 1.78GB 0.69GB 0.92GB

nodes in the LAN and WAN is about 1ms and 67ms, respectively,
and the bandwidth is about 1Gbps.

Table 1 summarizes the runtime of DECO protocols during a
TLS session. 50 samples were used to compute the mean and stan-
dard error of the mean (in parenthesis). TheMPC protocol we used
relies on offline preprocessing to improve performance. Since the
offline phase is input- and target-independent, it can be done prior
to the TLS session. Only the online phase is on the critical path.

As shown in table 1, DECO protocols are very efficient in the
LAN setting. It takes 0.37 seconds to finish the three-party hand-
shake. For query execution, 2PC-HMAC is efficient (0.13s per record)
as it only involves one SHA-2 evaluation in 2PC, regardless of
record size. 2PC-GCM is generally more expensive and the cost de-
pends on the query length, as it involves 2PC-AES over the entire
query. We evaluated its performance with queries ranging from
256B to 2KB, the typical sizes seen in HTTP GET requests [63]. In
the LAN setting, the performance is efficient and comparable to
2PC-HMAC.

In the WAN setting, the runtime is dominated by the network
latency because MPC involves many rounds of communication.
Nonetheless, the performance is still acceptable, given that DECO
is likely to see only periodic use for most applications we consider.

7.2 Proof generation

We instantiated zero-knowledge proofs with a standard proof sys-
tem [18] in libsnark [5]. We have devised efficiently provable state-
ment templates, but users of DECO need to adapt them to their
specific applications. SNARK compilers enable such adaptation in
a high-level language, concealing low-level details from develop-
ers. We used xjsnark [50] and its Java-like high-level language to
build statement templates and libsnark compatible circuits.

Our rationale in choosing libsnark is its relatively mature tool-
ing support. The proofs generated by libsnark are constant-size
and very efficient to verify, the downside being the per-circuit trusted
setup. With more effort, DECO can be adapted to use, e.g., Bullet-
proofs [25], which requires no trusted setup but has large proofs
and verification time.

Evaluation.Wemeasure five performancemetrics for each example—
prover time (the time to generate the proofs), verifier time (the time
to verify proofs), proof size, number of arithmetic constraints in
the circuit, and the peak memory usage during proof generation.

Table 2 summarizes the results. 50 samples were used to com-
pute the mean and its standard error. Through the use of efficient
statement templates and two-stage parsing, DECO achieves very
practical prover performance. Since libsnark optimizes for low ver-
ification overhead, the verifier time is negligible. The number of

constraints (and prover time) is highest for the binary option ap-
plication due to the extra string parsing routines. We use multi-
ple proofs in each application to reduce peak memory usage. For
the most complex application, the memory usage is 1.78GB. As lib-
snark proofs are of a constant size 287B, the proof sizes shown are
multiples of that.

7.3 End-to-end performance

DECO end-to-end performance depends on the available TLS ci-
phersuites, the size of private data, and the complexity of application-
specific proofs. Here we present the end-to-end performance of the
most complex application of the threewe implemented—the binary
option. It takes about 13.77s to finish the protocol, which includes
the time taken to generate unforgeable commitments (0.50s), to
run the first stage of two-stage parsing (0.30s), and to generate
zero-knowledge proofs (12.97s). These numbers are computed in
the LAN setting; in theWAN setting, MPC protocols are more time-
consuming (5.37s), pushing the end-to-end time up to 18.64s.

In comparison, Town Crier uses TEEs to execute a similar appli-
cation in about 0.6s [78, Table I], i.e., around 20x faster thanDECO,
but with added trust assumptions. Since DECO is likely to be used
only periodically for most applications, its overhead in achieving
cryptographic-strength security assurances seems reasonable.

8 LEGAL AND COMPLIANCE ISSUES

Although users can already retrieve their data fromwebsites,DECO
allows users to export the data with integrity proofs without their
explicit approval or even awareness. We now briefly discuss the
resulting legal and compliance considerations.

Critically, however, DECO users cannot unilaterally export data

to a third party with integrity assurance, but rely on oracles as
verifiers for this purpose. While DECO keeps user data private,
oracles learn what websites and types of data a user accesses. Thus
oracles can enforce appropriate data use, e.g., denying transactions
that may result in copyright infringement.

Both users and oracles bear legal responsibility for the data they
access. Recent case law on the Computer Fraud and Abuse Act
(CFAA), however, shows a shift away from criminalization of web
scraping [69], and federal courts have ruled that violating websites’
terms of service is not a criminal act per se [46, 49]. Users and or-
acles that violate website terms of service, e.g., “click wrap” terms,
instead risk civil penalties [15]. DECO compliance with a given
site’s terms of service is a site- and application-specific question.

Oracles have an incentive to establish themselves as trustwor-
thy within smart-contract and other ecosystems. We expect that
reputable oracles will provide users with menus of the particular
attestations they issue and the target websites they permit, vetting
these options to maximize security and minimize liability and per-
haps informing or cooperating with target servers.

The legal, performance, and compliance implications of incor-
rect attestations based on incorrect (and potentially subverted) data
are also important. Internet services today have complex, multi-
site data dependencies, though, so these issues aren’t specific to
DECO. Oracle services already rely on multiple data sources to
help ensure correctness [39]. Oracle services in general could ul-
timately spawn infrastructure like that for certificates, including
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online checking and revocation capabilities [56] and different tiers
of security [19].

9 RELATED WORK

Application-layer data-provenance. Signing content at the ap-
plication layer is a way to prove data provenance. For example,
[31, 77] aim to retrofit signing capabilities into HTTP. Application-
layer solutions, however, suffer from poormodularity and reusabil-
ity, as they are application-specific. They also require application-
layer key management, violating the principle of layer separation
in that cryptographic keys are no longer confined to the TLS layer.

Cinderella [33] uses verifiable computation to convert X.509 cer-
tificates into other credential types. Its main drawback is that few
users possessX.509 certificates. Open IDConnect [6] service providers
can issue signed claims about users. However, adoption is still sparse
and claims are often limited to basic information such as names
and email addresses.

Server-facilitated TLS-layer solutions. Several proposed TLS-
layer data-provenance proofs [22, 44, 65] require server-side modi-
fications. TLS-N [65] is a TLS 1.3 extension that enables a server to
sign the session using the existing PKI, and also supports chunk-
level redaction for privacy. We refer readers to [65] and references
therein for a survey of TLS-layer solutions. Server-facilitated solu-
tions suffer from high adoption cost, as they involve modification
to security-critical server code. Moreover, they only benefit users
when server administrators are able to and choose to cooperate.

Smart contract oracles. Oracles [26, 39, 78] relay authenticated
data from, e.g., websites, to smart contracts. TLSNotary [7], used
by Provable [10], allows a third party auditor to attest to a TLS
connection between a server and a client, but relies on deprecated
TLS versions (1.1 or lower). Town Crier [78] is an oracle service
that uses TEEs (e.g., Intel SGX) for publicly verifiable evidence of
TLS sessions and privacy-preserving computation on session data.
While flexible and efficient, it relies on TEEs, which some users
may reject given recently reported vulnerabilities, e.g., [24].

Selective openingwith context integrity.Selective opening, i.e.,
decrypting part of a ciphertext to a third party while proving its
integrity, has been studied previously. Sanitizable signatures [16,
23, 55, 70] allow a signed document to be selectively revealed. TLS-
N [65] allows “chunk-level” redacting of TLS records. These works,
however, consider a weaker adversarial model than DECO. They
fail to address the critical property of context integrity. DECO en-
forces proofs of context integrity in the rigorous sense of Sec. 5.2,
using a novel two-stage parsing scheme that achieves efficiency
by greatly reducing the length of the input to the zero-knowledge
proof.

10 CONCLUSION

We have introducedDECO, a privacy-preserving, decentralized or-
acle scheme formodern TLS versions that requires no trusted hard-
ware or server-side modifications.DECO allows users to efficiently
prove provenance and fine-grained statements about session con-
tent. We also identified context-integrity attacks that are universal
to privacy-preserving oracles and provided efficient mitigation in

a novel two-stage parsing scheme. We formalized decentralized or-
acles in an ideal functionality, providing the first such rigorous se-
curity definition. DECO can liberate private data from centralized
web-service silos, making it accessible to a rich spectrum of ap-
plications. We demonstrated DECO’s practicality through a fully
functional implementation along with three example applications.

ACKNOWLEDGEMENTS

This work was funded by NSF grants CNS-1514163, CNS-1564102,
CNS-1704615, and CNS-1933655, andAROgrantW911NF16-1-0145.

Personal financial interests:Ari Juels is a technical advisor to Chain-
link Smartcontract LLC and Soluna.

REFERENCES
[1] [n.d.]. Age Checker. https://agechecker.net.
[2] [n.d.]. Best BGP Route Network Monitoring Solution | ThousandEyes.

https://www.thousandeyes.com/solutions/bgp-and-route-monitoring
[3] [n.d.]. BGPmon | BGPmon. https://bgpmon.net
[4] [n.d.]. BGPStream. https://bgpstream.com
[5] [n.d.]. libsnark. https://github.com/scipr-lab/libsnark.
[6] [n.d.]. Open ID Connect. https://openid.net/connect
[7] [n.d.]. TLSNotary. https://tlsnotary.org/.
[8] 2014. Art. 20, GDPR, Right to data portability. https://gdpr-info.eu/art-20-gdpr/.
[9] 2019. Binary option. https://en.wikipedia.org/wiki/Binary_option.
[10] 2019. Provable blockchain oracle. http://provable.xyz.
[11] Aug 2019. (Bristol Format) Circuits of Basic Functions Suitable For MPC.

https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html.
[12] John Adler, Ryan Berryhill, Andreas G. Veneris, Zissis Poulos, Neil Veira, and

Anastasia Kastania. 2018. Astraea: A Decentralized Blockchain Oracle. In IEEE
iThings/GreenCom/CPSCom/SmartData.

[13] D. F. Aranha and C. P. L. Gouvêa. [n.d.]. RELIC is an Efficient LIbrary for Cryp-
tography. https://github.com/relic-toolkit/relic.

[14] ARM. 2019. mbedTLS. https://github.com/ARMmbed/mbedtls.
[15] American Bar Association. [n.d.].
[16] Giuseppe Ateniese, Daniel H Chou, Breno De Medeiros, and Gene Tsudik. 2005.

Sanitizable signatures. In ESORICS.
[17] Judit Bar-Ilan and Donald Beaver. 1989. Non-cryptographic fault-tolerant com-

puting in constant number of rounds of interaction. In ACM PODC.
[18] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. 2014. Suc-

cinct Non-Interactive Zero Knowledge for a von Neumann Architecture. In
USENIX Security.

[19] Robert Biddle, Paul C Van Oorschot, Andrew S Patrick, Jennifer Sobey, and Tara
Whalen. 2009. Browser interfaces and extended validation SSL certificates: an
empirical study. In ACM workshop on Cloud computing security. 19–30.

[20] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Moeller. 2006. Elliptic
Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS). RFC
4492.

[21] Frederik Zuiderveen Borgesius and Joost Poort. 2017. Online price discrimina-
tion and EU data privacy law. Journal of consumer policy (2017).

[22] Mark Brown and Russ Housle. 2007. Transport Layer Security (TLS) Evidence
Extensions. https://tools.ietf.org/html/draft-housley-evidence-extns-01.

[23] Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann, Marcus
Page, Jakob Schelbert, Dominique Schröder, and Florian Volk. 2009. Security of
sanitizable signatures revisited. In PKC. Springer.

[24] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdomwith Transient
Out-of-Order Execution. In USENIX Security.

[25] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
and Gregory Maxwell. 2018. Bulletproofs: Short Proofs for Confidential Trans-
actions and More. In IEEE S&P.

[26] Vitalik Buterin et al. 2014. A next-generation smart contract and decentralized
application platform. white paper 3 (2014), 37.

[27] Kevin R. B. Butler, Toni R. Farley, Patrick D. McDaniel, and Jennifer Rexford.
2010. A Survey of BGP Security Issues and Solutions. Proc. IEEE 98, 1 (2010),
100–122.

[28] Jan Camenisch and Markus Stadler. 1997. Efficient group signature schemes for
large groups. In Annual International Cryptology Conference.

[29] Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Nizzardo.
2017. Zero-Knowledge Contingent Payments Revisited: Attacks and Payments
for Services. In ACM CCS.

https://agechecker.net
https://www.thousandeyes.com/solutions/bgp-and-route-monitoring
https://bgpmon.net
https://bgpstream.com
https://github.com/scipr-lab/libsnark
https://openid.net/connect
https://tlsnotary.org/
https://gdpr-info.eu/art-20-gdpr/
https://en.wikipedia.org/wiki/Binary_option
http://provable.xyz
https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html
https://github.com/relic-toolkit/relic
https://github.com/ARMmbed/mbedtls
https://tools.ietf.org/html/draft-housley-evidence-extns-01


Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and Ari Juels

[30] Ran Canetti. 2000. Universally Composable Security: A New Paradigm
for Cryptographic Protocols. Cryptology ePrint Archive, Report 2000/067.
https://eprint.iacr.org/2000/067.

[31] Mark Cavage and Manu Sporny. 2019. Signing HTTP Messages. Internet-Draft
draft-cavage-http-signatures-11.

[32] CFTC. 2018. A Primer on Smart Contrats.
https://www.cftc.gov/sites/default/files/2018-11/LabCFTC_PrimerSmartContracts112718.pdf.

[33] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, and Bryan Parno.
2016. Cinderella: Turning shabby X. 509 certificates into elegant anonymous
credentials with the magic of verifiable computation. In IEEE S&P.

[34] Daniel Demmler, Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi,
Thomas Schneider, and Shaza Zeitouni. 2015. Automated synthesis of optimized
circuits for secure computation. In ACM CCS.

[35] Shivani Deshpande, Marina Thottan, Tin Kam Ho, and Biplab Sikdar. 2009. An
online mechanism for BGP instability detection and analysis. IEEE transactions
on Computers 58, 11 (2009), 1470–1484.

[36] T. Dierks and E. Rescorla. 2008. The Transport Layer Security (TLS) Protocol Ver-
sion 1.2. RFC 5246.

[37] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. 2015. A
Cryptographic Analysis of the TLS 1.3 Handshake Protocol Candidates. In ACM
Conference on Computer and Communications Security. ACM, 1197–1210.

[38] Morris J Dworkin. 2007. SP 800-38d. Recommendation for block cipher modes of
operation: Galois/counter mode (GCM) and GMAC. Technical Report.

[39] Steve Ellis, Ari Juels, and Sergey Nazarov. 4 Sept. 2017. ChainLink: A Decentral-
ized Oracle Network. https://link.smartcontract.com/whitepaper.

[40] FTC. 2017. Price Discrimination: Robinson-Patman Violations.
https://www.ftc.gov/tips-advice/competition-guidance/guide-antitrust-laws/price-discrimination-robinson-patman.

[41] Rosario Gennaro and Steven Goldfeder. 2018. Fast multiparty threshold ECDSA
with fast trustless setup. In ACM CCS.

[42] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. 2017. Message Franking via
Committing Authenticated Encryption. In CRYPTO.

[43] Dick Grune. 2010. Parsing Techniques: A Practical Guide (2nd ed.). Springer.
[44] Ibrahim Hajjeh and Mohamad Badra. 2017. TLS Sign.

https://tools.ietf.org/html/draft-hajjeh-tls-sign-04.
[45] Carmit Hazay and Yehuda Lindell. 2010. A Note on Zero-Knowledge Proofs

of Knowledge and the ZKPOK Ideal Functionality. Cryptology ePrint Archive,
Report 2010/552. https://eprint.iacr.org/2010/552.

[46] MarciaHofmann. 21 July 2010. Court: Violating Terms of Service Is Not a Crime,
But Bypassing Technical BarriersMight Be. Electronic Frontier Foundation (EFF)
News Update.

[47] Neil Howe. 2017. A Special Price Just for You. Forbes (Nov 2017).
https://www.forbes.com/sites/neilhowe/2017/11/17/a-special-price-just-for-you/.

[48] Ari Juels, Lorenz Breidenbach, Alex Coventry, Sergey Nazarov, and Steve Ellis.
2019. Mixicles: Private Decentralized Finance Made Simple. Chainlink whitepa-
per.

[49] George Khoury. 24 Jan. 2018. Violation of a Website’s Terms of Service is Not
Criminal. Findlaw blog post.

[50] Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi. 2018. xJsnark: A
Framework for Efficient Verifiable Computation. In IEEE S&P.

[51] Christopher Krügel, Darren Mutz, William K. Robertson, and Fredrik Valeur.
2003. Topology-Based Detection of Anomalous BGP Messages. In RAID (Lec-
ture Notes in Computer Science), Vol. 2820. Springer, 17–35.

[52] Yehida Lindell. 2005. Secure multiparty computation for privacy preserving data
mining. In Encyclopedia of Data Warehousing and Mining. IGI Global.

[53] Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-Louis, Alexander
Frolov, Tyler Kell, Tyrone Lobban, Christine Moy, Ari Juels, and Andrew Miller.
2020. CanDID: Can-DoDecentralized Identity with Legacy Compatibility, Sybil-
Resistance, and Accountability. Cryptology ePrint Archive, Report 2020/934.
https://eprint.iacr.org/2020/934.

[54] Sinisa Matetic, Moritz Schneider, Andrew Miller, Ari Juels, and Srdjan Capkun.
2018. DelegaTEE: Brokered Delegation Using Trusted Execution Environments.
In USENIX Security.

[55] Kunihiko Miyazaki, Mitsuru Iwamura, Tsutomu Matsumoto, Ryôichi Sasaki, Hi-
roshi Yoshiura, Satoru Tezuka, and Hideki Imai. 2005. Digitally Signed Docu-
ment Sanitizing Scheme with Disclosure Condition Control. IEICE Transactions
(2005).

[56] Michael Myers, Rich Ankney, Ambarish Malpani, Slava Galperin, and Carlisle
Adams. 1999. X. 509 Internet public key infrastructure online certificate status
protocol-OCSP. Technical Report. RFC 2560.

[57] Helen Nissenbaum. 2009. Privacy in context: Technology, policy, and the integrity
of social life. Stanford University Press.

[58] Goldreich Oded. 2009. Foundations of Cryptography: Volume 2, Basic Applications
(1st ed.). Cambridge University Press.

[59] Andrew Odlyzko. 2003. Privacy, economics, and price discrimination on the
Internet. In 5th international conference on Electronic commerce.

[60] @OpenLawOfficial. 2018. The Future of Derivatives: An End-to-End, Legally
Enforceable Option Contract Powered by Ethereum.

[61] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In EUROCRYPT.

[62] Jack Peterson and Joseph Krug. 2015. Augur: a decentralized, open-source plat-
form for prediction markets. arXiv:1501.01042 (2015).

[63] The Chromium Projects. [n.d.]. The SPDY whitepaper.
https://dev.chromium.org/spdy/spdy-whitepaper.

[64] E. Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446.

[65] Hubert Ritzdorf, Karl Wüst, Arthur Gervais, Guillaume Felley, and Srdjan Čap-
kun. 2018. TLS-N: Non-repudiation over TLS Enabling Ubiquitous Content Sign-
ing.. In NDSS.

[66] J. Salowey,A. Choudhury, and D.McGrew. 2008. AESGalois CounterMode (GCM)
Cipher Suites for TLS. RFC 5288.

[67] Prateek Saxena, David Molnar, and Benjamin Livshits. 2011. SCRIPTGARD: au-
tomatic context-sensitive sanitization for large-scale legacy web applications. In
ACM CCS.

[68] Theodoor Scholte, Davide Balzarotti, and Engin Kirda. 2011. Quo Vadis? A Study
of the Evolution of Input Validation Vulnerabilities in Web Applications. In Fi-
nancial Cryptography.

[69] Andrew Sellars. 2018. Twenty Years of Web Scraping and the Computer Fraud
and Abuse Act. BUJ Sci. & Tech. L. 24 (2018), 372.

[70] Ron Steinfeld, Laurence Bull, and Yuliang Zheng. 2001. Content extraction sig-
natures. In International Conference on Information Security and Cryptology.

[71] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li, Jennifer Rexford,
Mung Chiang, and Prateek Mittal. 2015. RAPTOR: Routing Attacks on Privacy
in Tor. In USENIX Security.

[72] Jerry Useem. 2017. How Online Shopping Makes
Suckers of Us All. The Atlantic (Jul 2017).
https://www.theatlantic.com/magazine/archive/2017/05/how-online-shopping-makes-suckers-of-us-all/521448/.

[73] L. Wang, G. Asharov, R. Pass, T. Ristenpart, and A. Shelat. 2019. Blind Certificate
Authorities. In IEEE S&P.

[74] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2016. EMP-toolkit: Efficient
MultiParty computation toolkit. https://github.com/emp-toolkit.

[75] XiaoWang, Samuel Ranellucci, and Jonathan Katz. 2017. Authenticated Garbling
and Efficient Maliciously Secure Two-Party Computation. In ACM CCS.

[76] Andrew Chi-Chih Yao. 1982. Protocols for secure computations. In FOCS.
[77] Jeffrey Yasskin. 2019. Signed HTTP Exchanges. Internet-Draft draft-yasskin-http-

origin-signed-responses-05.
[78] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. 2016. Town

Crier: An authenticated data feed for smart contracts. In ACM CCS.
[79] Jian Zhang, Jennifer Rexford, and Joan Feigenbaum. 2005. Learning-based anom-

aly detection in BGP updates. In Proceedings of the 2005 ACM SIGCOMM work-
shop on Mining network data. 219–220.

[80] Ke Zhang, Amy Yen, Xiaoliang Zhao, Dan Massey, S Felix Wu, and Lixia Zhang.
2004. On detection of anomalous routing dynamics in BGP. In International
Conference on Research in Networking. Springer, 259–270.

A PROTOCOLS DETAILS

A.1 Formal specification

We gave a self-contained informal description of the three-party
handshake protocol in Sec. 4.1. The formal specification is given
in fig. 6 along with its building block ECtF in fig. 7. The post-
handshake protocols for CBC-HMAC described in Sec. 4.2 is spec-
ified in fig. 8.

A.2 Selective opening (CBC-HMAC)

Redacting a suffix. When a suffix Bi+ is to be redacted, P com-
putesπ = ZK-PoK{Bi+, kEnc : f (si ,Bi+) = ih∧H (kMAC⊕opad| |ih) =

σ ∧B1025‖B1026‖B1027 = CBC(kEnc,σ )} and si is the state after ap-
plying f on Bi−‖Bi . P sends (π ,Bi−‖Bi ) to V. The verifier then
1) checks si−1 by applying f on Bi−‖Bi , and 2) verifies π . Essen-
tially, the security of this follows from pre-image resistance of f .
Moreover,V doesn’t learn the redacted suffix since ih = f (s,Bi+)

is kept secret from V . The total cost is 3 AES and 256 − i SHA-2
hashes in ZKP.
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The three-party handshake (3P-HS) protocol among P, V and S

Public information: Let EC be the Elliptic Curve used in ECDHE over Fp with
order p ,G a parameter, and YS the server public key.

Output: P and V output kMAC
P

and kMAC
V

respectively, while the TLS server out-

puts kMAC
= kMAC
P
+ kMAC
V

. Besides, both S and P outputs kEnc.

TLS server S: follow the standard TLS protocol.

Prover P:

On initialization: P samples rc ←$ {0, 1}256 and sends ClientHello(rc ) to S to
start a standard TLS handshake.
On receiving ServerHello(rs ), ServerKeyEx(Y , σ , cert) from S:

• P verifies that cert is a valid certificate and that σ is a valid signature over
(rc, rs, YS ) signed by a key contained in cert. P sends (rc, rs, YS , σ , cert) to
V .

• V checks cert and σ similarly. V then samples sV ←$Fp and computes YV =
sV ·G . Send YV to P .
• P samples sP ←$Fp and computes YP = sP ·G . Send ClientKeyEx(YP + YV )

to S.
• P andV run ECtF to compute a sharing of the x -coordinate ofYP +YV , denoted
zP , zV .
• P (and V) send zP (and zV ) to Fhs2PC (specified below) to compute shares of ses-

sion keys and the master secret. P receives (kEnc, kMAC
P

,mP ), while V receives

(kMAC
V

,mV ).
• P computes a hash (denoted h) of the handshake messages sent and re-

ceived thus far, and runs 2PC-PRF with V to compute s = PRF(mP ⊕
mV, “client finished”, h) on the hash of the handshake messages and send a
Finished(s ) to S.

On receiving other messages from S:

• If it’s Finished(s ), P and V run a 2PC to check s
?
= PRF(mP ⊕

mV, “server finished”, h) and abort if not.
• Otherwise respond according to the standard TLS protocol.

Fhs
2PC

with P and V

Public Input: nonce rc, rs

Private Input: zP ∈ Fp from P; zV ∈ F
2
p from V

• z := zP + zv
• m := PRF(z, “master secret”, rc ‖rs ) (truncate at 48 bytes)
• kMAC, kEnc := PRF(m, “key expansion”, rs ‖rc ) // key expansion

• Sample rk , rm ←$Fp . Send (k
Enc, rk , rm ) to P , and (rk ⊕ k

MAC, rm ⊕

m) to V privately.

Figure 6: The protocol of three-party handshake.

ECtF between P and V

Input: P1 = (x1, y1) ∈ EC (Fp ) from P , P2 = (x2, y2) ∈ EC (Fp ) from V.

Output: P and V output s1 and s2 such that s1 + s2 = x where (x, y) = P1 + P2
in EC .
Protocol:

• P (and V) sample ρi ←$Zp for i ∈ {1, 2 } respectively. P and V run
α1, α2 := MtA((−x1, ρ1), (ρ2, x2)).

• P computes δ1 = −x1ρ1 + α1 and V computes δ2 = x2ρ2 + α2.
• P (and V) reveal δ1 (and δ2 ) to each other and compute δ = δ1 + δ2 .
• P (and V) compute ηi = ρi · δ

−1 for i ∈ {1, 2 } respectively.
• P and V run β1, β2 := MtA((−y1, η1), (η2, y2)).
• P computes λ1 = −y1 · η1 + β1 and V computes λ2 = y2 · η2 + β2 . They

run γ1, γ2 := MtA(λ1, λ2).
• P (and V) computes si = 2γi + λ2i − xi for i ∈ {1, 2 } respectively.
• P outputs s1 and V outputs s2 .

Figure 7: (ECtF) A protocol for converting shares of EC

points in EC(F) to shares of coordinates in F.

Redacting a prefix.P computes twoZKPs: 1)π1 = ZK-PoK{Bi−, kMAC :
H (kMAC⊕ipad| |Bi−) = si−1}; 2)π2 = ZK-PoK{kMAC, kEnc : H (kMAC⊕

2PC-HMAC between P and V

Input: P inputs kMAC
P

,m and V inputs kMAC
V

.

Output: P outputs HMAC(kMAC,m) where kMAC
= kMAC
P
⊕ kMAC
V

.

One-time setup: P and V use 2PC to compute s0 = f (IV, k
MAC ⊕ ipad) and

reveal s0 to P .
To compute a tag for messagem:

• P computes inner hash hi = f (s0,m).
• P inputs kMAC

P
, hi and V inputs kMAC

V
to 2PC which revealsH(kMAC ⊕

opad ‖hi ) to both parties.

Figure 8: The 2PC-HMAC protocol. f denotes the compres-

sion function of the hash function H and IV denotes the ini-

tial value.

opad| |ih) = σ ∧ B1025‖B1026‖B1027 = CBC(kEnc,σ )}. P sends
(π1,π2, si−1,Bi ‖Bi+) to V . The verifier checks that 1) si−1 is cor-
rect using π1 and then computes f (si−1,Bi ‖Bi+) to obtain the in-
ner hash ih, 2) π2 is verified using the computed ih. The cost in-
curred is 3 AES and 256 − i SHA-2 hashes in ZKP.

Note that redacting a prefix/suffix only makes sense if the re-
vealed portion does not contain any private user data. Otherwise,
P would have to find the smallest substring containing all the sen-
sitive blocks and redact either the prefix/suffix similar to above.

B PROTOCOLS DETAILS FOR GCM

B.1 Preliminaries

GCM is an authenticated encryption with additional data (AEAD)
cipher. To encrypt, the GCMcipher takes as inputs a tuple (k, IV ,M,A):
a secret key, an initial vector, a plaintext of multiple AES blocks,
and additional data to be included in the integrity protection; it
outputs a ciphertext C and a tag T . Decryption reverses the pro-
cess. The decryption cipher takes as input (k, IV ,C,A,T ) and first
checks the integrity of the ciphertext by comparing a recomputed
tag with T , then outputs the plaintext.

The ciphertext is computed in the countermode:Ci = AES(k, inci (IV ))⊕

Mi where inci denotes incrementing IV for i times (the exact for-
mat of inc is immaterial.)

The tag Tag(k, IV ,C,A) is computed as follows. Given a vector
X ∈ Fm

2128
, the associated GHASH polynomial PX : F2128 → F2128

is defined as PX (h) =
∑m
i=1Xi · h

m−i+1 with addition and multi-
plication done in F2128 . Without loss of generality, suppose A and
C are properly padded. Let ℓA and ℓC denote their length. A GCM
tag is

Tag(k, IV ,C,A) := AES(k, IV ) ⊕ PA ‖C ‖ℓA ‖ℓC (h) (1)

where h = AES(k, 0).
When GCM is used in TLS, each plaintext recordD is encrypted

as follows. A unique nonce n is chosen and the additional data κ is
computed as a concatenation of the sequence number, version, and
length of D. GCM encryption is invoked to generate the payload
record as M = n‖GCM(k,n,D,κ). We refer readers to [38] for a
complete specification.
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Post-handshake protocols for GCM

Private input: kP and kV from P and V respectively. k = kP + kV is the
encryption key.

Protocol for preprocessing

On initialization: P (and V) sends kP and (kV ) to FPP and wait for output
{

hP, i
}

i
(and

{

hV, i

}

i
).

FPP

After receiving k1, k2 from two parties, compute h := AES(k1 + k2, 0). Sample n

random numbers {ri }
n
i=1 and compute

{

hi
}n

i=1 in F2128 . For i ∈ [n], send ri to

player 1 and ri ⊕ hi to player 2.

Protocol for decrypting TLS records

Prover P:

On receiving a record (IV , C , A, T ) from S:

• Let X = A ‖C ‖ℓA ‖ℓC .
• Send (kP, IV ) to FAES-EqM and wait for output cP .
• Send (IV , X ) to V and wait for the response P .
• Compute T ′ = P + cP +

∑

i Xi · hP, i in F2128 .

• Abort if T ′ , T . Otherwise, compute K such that Ki = inci (IV ) for
i ∈ [ℓC ]. Send (IV , ℓC , Decrypt) to V .
• Send (kP, K ) to FAES-EqM-Asym as party 1 and wait for output K ′.
• Decrypt the message asMi = K

′
i ⊕ Ci .

Verifier V:

On receiving (IV , X ) from P:

• If IV found in store, abort. Otherwise store IV and proceed.
• Send (kV, IV ) to FAES-EqM and wait for output cV .
• Compute P = cV +

∑

i Xi · hV, i in F2128
• Send P to P .

On receiving (IV , n, Decrypt) from P:

• Compute K such that Ki = inci (IV ) for i ∈ [n].
• Abort if any Ki is found in store (as previously used IVs.)
• Send (kV, K ) to FAES-EqM-Asym as party 2.

FAES-EqM

Wait for input (ki ,mi ) from party i for i ∈ {1, 2 }. Abort ifm1 , m2 . Sample
r ←$F. Compute c = AES(k1 ⊕ k2,m1). Send r to party 1 and c ⊕ r to party 2.

FAES-EqM-Asym

Wait for input (ki ,mi ) from party i for i ∈ {1, 2 }. Abort ifm1 ,m2. Compute
c = AES(k1 ⊕ k2,m1). Send c to party 1 and ⊥ to party 2.

Figure 9: The post-handshake protocols for AES-GCM.

B.2 Query execution

The 2PC protocols for verifying tags and decrypting records are
specified in fig. 9.

Tag creation/verification.Computing or verifying a GCM tag in-
volves evaluating eq. (1) in 2PC. A challenge is that eq. (1) involves
both arithmetic computation (e.g., polynomial evaluation in F2128 )
as well as binary computation (e.g., AES). Performing multiplica-
tion in a large field in a binary circuit is expensive, while comput-
ing AES (defined in GF(28)) in F2128 incurs high overhead. Even if
the computation could somehow separated into two circuits, evalu-
ating the polynomial alone—which takes approximately 1,000 mul-
tiplications in F2128 for each record—would be unduly expensive.

Our protocol removes the need for polynomial evaluation. The
actual 2PC protocol involves only binary operations and thus can
be done in a single circuit. Moreover, the per-record computation
is reduced to only one invocation of 2PC-AES.

The idea is to compute shares of
{

hi
}

(in a 2PC protocol) in a
preprocessing phase at the beginning of a session. The overhead
of preprocessing is amortized over the session because the same h
used for all records that follow. With shares of

{

hi
}

, P and V
can compute shares of a polynomial evaluation PA ‖C ‖ℓA ‖ℓC (h)

locally. They also compute AES(k, IV ) in 2PC to get a share of
Tag(k, IV ,C,A). In total, only one invocation of 2PC-AES in needed
to check the tag for each record.

It is critical that V never responds to the same IV more than
once; otherwise P would learn h. Specifically, in each response,V
reveals a blinded linear combination of her shares

{

hV,i

}

in the
form ofLIV ,X = AES(k, IV ) ⊕

∑

i Xi ·hV,i . It is important that the
value is blinded by AES(k, IV ) because a single unblinded linear
combination of

{

hV,i

}

would allow P to solve for h. Therefore, if
V responds to the same IV twice, the blinding can be removed by
adding the two responses (in F2128 ): LIV ,X ⊕ LIV ,X ′ =

∑

i (Xi +

X ′i ) ·hV,i . This follows from the nonce uniqueness requirement of
GCM [66].

Encrypting/decryptingrecords.Once tags are properly checked,
decryption of records is straightforward. P and V simply com-
pute AES encryption of inci (IV )with 2PC-AES. A subtlety to note
is that V must check that the counters to be encrypted have not

been used as IV previously. Otherwise P would learn h to P in a
manner like that outlined above.

B.3 Proof Generation

Revealing a block. P wants to convinceV that an AES block Bi
is the ith block in the encrypted record ˆrec. The proof strategy is
as follows: 1) prove that AES block Bi encrypts to the ciphertext
block B̂i and 2) prove that the tag is correct. Proving the correct
encryption requires only 1 AES in ZKP. Naïvely done, proving the
correct tag incurs evaluating the GHASH polynomial of degree 512
and 2 AES block encryptions in ZKP.

We manage to achieve a much more efficient proof by allowing
P to reveal two encrypted messages AES(k, IV ) and AES(k, 0) to
V, thus allowingV to verify the tag (see eq. (1)). P only needs to
prove the correctness of encryption in ZK and that the key used
corresponds to the commitment, requiring 2 AES and 1 SHA-2 (P
commits to kP by revealing a hash of the key). Thus, the total cost
is 3 AES and 1 SHA-2 in ZKP.

Revealing a TLS record. The proof techniques are a simple ex-
tension from the above case. P reveals the entire record rec and
proves correct AES encryption of all the AES blocks, resulting in a
total 514 AES and 1 SHA-2 in ZKP.

Revealing a TLS record except for a block. Similar to the above
case, P proves encryption of all the blocks in the record except one,
resulting in a total 513 AES and 1 SHA-2 in ZKP.

C PROTOCOL EXTENSIONS

C.1 Adapting to support TLS 1.3

To support TLS 1.3, the 3P-HS protocol must be adapted to a new
handshake flow and a different key derivation circuit. Notably, all
handshake messages after the ServerHello are now encrypted. A
naïve strategy would be to decrypt them in 2PC, which would be
costly as certificates are usually large. However, thanks to the key
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independence property of TLS 1.3 [37], P and V can securely re-
veal the handshake encryption keys without affecting the secrecy
of final session keys [37]. Handshake integrity is preserved because
the Finished message authenticates the handshake using yet an-
other independent key. (In fact [37, §3.1] argues that the signatures
already authenticate the handshake.)

Therefore the optimized 3P-HS work as follows. P and V per-
form ECDHE the same as before. Then they derive handshake and
application keys by executing 2PC-HKDF, and reveal the hand-
shake keys to P , allowing P to decrypt handshake messages lo-
cally (i.e., without 2PC). The 2PC circuit involves roughly 30 in-
vocations of SHA-256, totaling to approximately 70k AND gates,
comparable to that for TLS 1.2. Finally, since CBC-HMAC is not
supported by TLS 1.3, DECO can only be used in GCM mode.

C.2 Query construction is optional

For applications that bind responses to queries, e.g., when a stock
ticker is includedwith the quote, 2PC query construction protocols
can be avoided altogether. Since TLS uses separate keys for each
direction of communication, client-to-server keys can be revealed
to P after the handshake so that P can query the server without
interacting withV .

C.3 Supporting multi-round sessions

DECO can be extended to support multi-round sessions where P
sends further queries depending on previous responses. After each
round, P executes similar 2PC protocols as above to verify MAC
tags of incoming responses, since MAC verification and creation
is symmetric. However an additional commitment is required to
prevent prevent P from abusing MAC verification to forge tags.

In TLS, different MAC keys are used for server-to-client and
client-to-server communication. To support multi-round sessions,
P andV run 2PC to verify tags for former, and create tags on fresh
messages for latter.We’ve specified the protocols to create (and ver-
ify) MAC tags. Now we discuss additional security considerations
for multi-round sessions.

When checking tags for server-to-client messages, we must en-
sure that P cannot forge tags on messages that are not originally
from the server. Suppose P wishes to verify a tagT on messageM .
The idea is to have P first commit to T , then P and V run a 2PC
protocol to compute a tag T ′ on message M . P is asked to open
the commitment toV and if T , T ′,V aborts the protocol. Since
P doesn’t know the MAC key, P cannot compute and commit to
a tag on a message that is not from the server.

When creating tags for client-to-server messages,V makes sure
MAC tags are created on messages with increasing sequence num-
bers, as required by TLS. This also prevents a malicious P from
creating two messages with the same sequence number, because
there is no way for V to distinguish which one was sent to the
server.

C.4 An alternative DECO protocol: Proxy mode

As shown in table 1, the HMAC mode of DECO is highly efficient
and the runtime of creating and verifying HMAC tags in 2PC is
independent of record size (cf. fig. 8). The GCM mode is efficient
for small requests with preprocessing, but can be expensive for

large records. We now present a highly efficient alternative that
avoids post-handshake 2PC protocols altogether.

The idea is to have the verifier V act as a proxy between the
prover P and the TLS server S, i.e., P sends/receives messages
to/from S throughV. The modified flow of the DECO protocol is
as follows: after the three-party handshake, P commits to her key
share kP thenV reveals kV to P . Therefore P now has the entire
session key k = kP +kV . As P uses k to continue the session with
the server,V records the proxy traffic. After the session concludes,
P proves statements about the recorded session the same as before.

It’s worth emphasizing that the three-party handshake is re-
quired for unforgeability. Unlike CBC-HMAC, GCM is not commit-
ting [42]: for a given ciphertext and tag (C,T ) encrypted with key
k, one can find k′ , k that decryptsC to a different plaintext while
computing the same tag, as GCM MAC is not collision-resistant.
To prevent such attacks, the above protocol requires P to commit
to her key share before learning the session key.

Security properties and network assumptions. The verifier-
integrity and privacy properties are clear, as a maliciousV cannot
break the integrity and privacy of TLS (by assumption).

For prover integrity, though, we need to assume that the proxy
can reliably connect to S throughout the session. First, we assume
the proxy can ascertain that it indeed is connected with S. More-
over, we assumemessages sent between the proxy andS cannot be
tampered with by P , who knows the session keys and thus could
modify the session content.

Note that during the three-party handshake, V can ascertain
the server’s identity by checking the server’s signature over a fresh
nonce (in standard TLS). After the handshake, however, V has to
rely on network-layer indicators, such as IP addresses. In practice,
V must therefore have correct, up-to-date DNS records, and that
the network betweenV and the server (e.g., their ISP and the back-
bone network) must be properly secured against traffic injection,
e.g., throught BGP attacks [71]. (Eavesdropping isn’t problematic.)

These assumptions have been embraced by other systems in a
similar proxy setting (e.g., [73]), as BGP attacks are challenging to
mount in practice. We can further enhance our protocol against
traffic interception by distributing verifiers nodes geographically.
Moreover, various detection techniques have been proposed [2, 3,
27, 35, 51, 79, 80] that can be deployed by verifiers. Often BGP at-
tacks are documented after the fact (e.g., see [4]), therefore, when
applicable, applications of DECO can be enhanced to support re-
vocation of affected sessions (for example, when DECO is used to
issue credentials in an identity system such as [53].) We leave fur-
ther exploration as future work.

This alternative protocol represents a different performance-security
tradeoff. It’s highly efficient because no intensive cryptography oc-
curs after the handshake, but it requires additional assumptions
about the network and therefore only withstands a weaker net-
work adversary.

D SECURITY PROOFS

Recall Theorem 4.1. We now prove that the protocol in fig. 4 se-
curely realizesFOracle. Specifically,we show that for any real-world
adversaryA, we can construct an ideal world simulator Sim, such
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that for all environments Z, the ideal execution with Sim is in-
distinguishable from the real execution with A. We refer readers
to [30, 58] for simulation-based proof techniques.

Proof. Recall that we assumeS is honest throughout the proto-
col. Hence, we only consider cases where A maliciously corrupts
either P or V . This means that we only need to construct ideal-
world simulators for the views of P andV .

Malicious P.Wewish to show the prover-integrity guarantee. Ba-
sically, ifV receives (b,S), then P must have input some θs such
that S(�ery(θs )) = R and b = Stmt(R).

Given a real-world PPT adversary A, Sim proceeds as follows:

(1) Sim runsA, FZK and F2PC internally. Sim forwards any input
z fromZ toA and records the traffic going to and from A.

(2) Upon request from A, Sim runs 3P-HS as V (using F2PC as
a sub-routine). During 3P-HS, when A outputs a message m
intended for S, Sim forwards it to FOracle as (sid,S,m) and
forwards (sid,m) toA if it receives any messages from FOracle.
By the end, Sim learns YP , sV , k

MAC
V

.

(3) Upon request fromA, Sim runs 2PC-HMAC asV, using kMAC
V

as input. Again, Sim uses F2PC as a sub-routine to run 2PC-
HMAC and forwards messages to S as above and forwards the
response from S to A. Sim records the messages between A
andS during this stage in (Q̂, R̂). Note that these are ciphertext
records.

(4) When A sends (sid, Q̂, R̂, kMAC
P
), reply with (sid, kMAC

V
).

(5) Upon receiving (sid, “prove”,x,w) (with x = (kEnc,θs ,Q,R)

andw = (Q̂, R̂, kMAC,b)) fromA, Sim checks that Q̂ = CBC_HMAC(kEnc, kMAC,Q),
R̂ = CBC_HMAC(kEnc, kMAC,R), and that�ery(θs ) = Q .

(6) If all of the above checks passed, Sim sends θs to FOracle and
instructsFOracle to send the output toV . Sim outputswhatever
A outputs.

Nowwe argue that the ideal executionwith Sim is indistinguish-
able from the real execution withA.

Hybrid H1 is the real-world execution of ProtDECO.
HybridH2 is the same asH1, except that Sim simulatesA, FZK

and F2PC internally. Sim records and forwards its private θs input
to A. For each step of ProtDECO, Sim forwards all messages be-
tween A and V and A and S, as in the real execution. Since the
simulation of ideal functionality is perfect, H1 and H2 are indistin-
guishable.

Hybrid H3 is the same as H2, except that V sends input to
FOracle, which sends it to Sim and Sim simulates V internally.
Specifically, Sim samples ŝV and uses ŝV · Y to derive a share of
the MAC key K̂ , which it uses in the sequential 2PC-HMAC invo-
cations. Upon receiving (sid, Q̂, R̂, kMAC

P
), Sim sends (sid, kMAC

V
) to

A. If Sim receives (sid, “prove”,x,w), it internally forwards it to
FZK, verifies its output asV and also, sends θs to FOracle. The in-
distinguishability between H2 and H3 is immediate because ŝV is
uniformly random.

Hybrid H4 is the same as H3, except Sim adds the checks in
Step 5. The indistinguishability between H3 and H4 can be shown
by checking that if any of the checks fails,V would abort the real-
world execution as well. There are two reasons that Simmay abort:
1)Q,R fromA is not originally fromS, or 2) kEnc, kMAC fromA is
not the same key as derived during the handshake. We now show

that both conditions would triggerV to abort in H3 as well except
with negligible probability.

• Assuming DL is hard in the group used in the handshake, A
cannot learn ŝV . Furthermore, due to the security of 2PC,A can-
not learn the session MAC key kMAC. If A maliciously selects
ŶP correlated with ŶV , it would have to find the discrete log of
ŶP − YV , denoted ŝP . Without such a ŝP , except with negligible
probability, the output shares K̂MAC

V
and K̂MAC

P
of 3P-HS would

fail to verify a MAC from an honest server whose MAC key is
derived using ŶP in 2PC-HMAC, later in the protocol.
• The unforgeability guarantee of HMAC ensures that without
knowledge of kMAC, A cannot forge tags that verifies against
kMAC (checked byV in the last step of ProtDECO).
• IfA sends a different (kEnc, kMAC) pair than that derived during
the handshake to Sim and the decryption and MAC check suc-
ceeds, thenA would have broken the receiver-binding property
of CBC-HMAC [42].

It remains to show that H4 is exactly the same the ideal exe-
cution. Due to Step 5 and 6, FOracle delivers (sid, Stmt(R),S) toV
only if ∃θs fromA such that R is the response fromS to�ery(θs ).

MaliciousV. As the verifier is corrupt, we are interested in show-
ing the verifier-integrity and privacy guarantees. Sim proceeds as
follows:

(1) Sim runsA,FZK and F2PC internally to simulate the real-world
interaction with the prover P. Given input z from the environ-
mentZ, Sim forwards it toA.

(2) Upon receipt of �ery and Stmt from A, forward them to
FOracle and instruct it to send them to P .

(3) After P sends θs to FOracle, FOracle sends the output (sid,Q,R)
to P. Sim gets (sid, Stmt(R),S) from FOracle and learns the
record sizes |Q |, |R |.

(4) Send (sid,S, handshake) to FOracle, where handshake contains
client handshake messages and receive certificate and signa-
tures ofS from FOracle. Note that at the end of the server hand-
shake, P receives and sends finished messages, which we de-
note “serverFinished” and “proverFinished”. The finished mes-
sages include HMAC tags, which we denote τS and τP (tags
on S and P’s messages respectively).

(5) Upon request from A, Sim runs 3P-HS as P, using the server
handshake messages received in the previous step, learning
sP ,YV , k

Enc, kMAC
P

.
(6) Sim starts 2PC-HMAC as P to compute a tag τq on a random

Q ′←$ {0, 1} |Q | .
(7) Sim uses a random key k̂ to compute a tag τr on a random

R′←$ {0, 1} |R | .
(8) Let Q̂ = CBC(kEnc,Q ′‖τq) and R̂ = CBC(kEnc,R′‖τr ). At the

commit phase, Sim sends encrypted data (sid, Q̂, R̂, kMAC
P
) toA

and receives kMAC
V

from A.

(9) Sim asserts that the handshake tagτS = HMAC(kMAC, “serverFinished”)
and that τP = HMAC(kMAC, “proverFinished”).

(10) Sim asserts that τq = HMAC(kMAC,Q ′).
(11) To simulate the appropriate delay, Sim also runs a dummy com-

putation HMAC(kMAC,R′) in paralell with Step 9.
(12) Sim sends (sid, “proof”, 1, (Q̂, R̂, kMAC, Stmt(R))) toA and out-

puts whatever A outputs.
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We argue that the ideal execution with Sim is indistinguishable
from the real execution withA in a series hybrid worlds.

Hybrid H1 is the real-world execution of ProtDECO.
HybridH2 is the same asH1, except that Sim simulates FZK and

F2PC internally. Sim also invokes FOracle and gets (sid, Stmt(R),S),
learns record sizes |Q |, |R |. Since the simulation of ideal function-
ality is perfect, H1 and H2 is indistinguishable.

HybridH3 is the same asH2, except that Sim simulatesP. Specif-
ically, Sim samples sP and uses sP ·Y to derive a share of the MAC
key kMAC

P
. Then, Sim uses kMAC

P
and a random Q ′ = {0, 1} |Q | as

inputs to 2PC-HMAC and receives the tag τq . Then, Sim uses a ran-

dom key k̂ , and a random R′ = {0, 1} |R | to compute a dummy tag
τr . Afterwards, Sim commits, i.e., sends encryption ofQ ′ and R′ to
A. Sim also adds the checks in Step 9 and 10. To simulate the ap-
propriate delay for checking a tag on R′, a plaintext of length |R |,
Sim runs a dummy tag computation. Finally, Sim skips invoking
FZK and directly providesA with the output obtained earlier from
FOracle, i.e., Stmt(R), alongwith kMAC, i.e. the tuple (sid, “proof”, 1, (Q̂, R̂, kMAC, Stmt(R))).
A cannot distinguish between the real and ideal executions be-
cause:

(1) Since input sizes are equal, the number of invocations of 2PC-
HMAC is also equal.

(2) In each invocation of 2PC-HMAC and HMAC, A learns one
SHA-2 hash of the input message which is like a random oracle.

(3) If the value of kMAC
V

provided byV is correct, in both the real
and ideal world, all tags should verify and the protocol should
proceed to the next step and the time to run the checks should
be indistinguishable from the real world.

(4) A can provide a malicious kMAC
V

in two ways:

• Malicious kMAC
V

is provided by V in Step 8: τS and τP will
not verify in Step 9. Sim will then abort with the same delay
as in the real world.
• A inputs a malicious kMAC

V
to the 2PC-HMAC: τq will fail

to verify in 10 by the same argument as in the malicious P
case.

(5) Since |Q ′ | = |Q | and |R′ | = |R |, their encryptions are also of
equal size and indistinguishable.

(6) In the end, A receives the same output as the real execution.

�

E APPLICATION DETAILS

We provide the remaining application details omitted from Sec. 6
here.

Binary Option. The user (P) also needs to reveal enough por-
tion of the HTTP GET request to oracle (V) in order to convince
access to the correct API endpoint. The GET request contains sev-
eral parameters—some to be revealed like the API endpoint, and
others with sensitive details like stock name and private API key.
P redacts sensitive params using techniques from Sec. 5.1 and re-
veals the rest toV. The API key provides enough entropy prevent-
ingV from learning the sensitive params. Without additional care
though, a cheating P can alter the semantics of the GET request
and conceal the cheating by redacting extra parameters. To ensure
this does not happen, P needs to prove that the delimiter “&” and

<title >Demographic Data </title >

<span id='EMPLID '> 111111 </span >

<span id='NAME '> Alice </span >

<span id=’BIRTHDATE’> 01/01/1990 </span> ...

Figure 10: The demographic details of a student displayedon

aUniv.website.Highlighted text contains student age.Reveal

mode is used together with two-stage parsing.

separator “=” do not appear in the redacted text. The security is
argued below.

HTTP GET requests (and HTML) have a special restriction: the
demarcation between a key and a value (i.e., middle) and the start
of a key-value pair (i.e., start) are never substrings of a key or a
value. This means that to redact more than a single contiguous
key or value, P must redact characters in {middle, start }. So we
have consG,G′(R,R

′) check that: (1) |R | = |R′ |; and (2) ∀i ∈ |R′ |,
either R′[i] = D ∧ R[i] <

{

middle, start
}

or R[i] = R′[i] (D is a
dummy character used to do in-place redaction). Checking CTXG′
is then unnecessary.

Age Proof. Figure 10 shows the demographic details of a student
stored on Univ. website such as the name, birth date, student ID
among others. The prover parses 6-7 AES blocks that contain the
birth date and proves her age is above 18 in ZK to the verifier.
Like other examples, due to the unique HTML tags surrounding
the birth date, this is also a key-value grammar with unique keys
(see Sec. 5.2). Similar to application 1, this example requires addi-
tional string processing to parse the date and compute age.

Price discrimination. Figure 11 shows parts of an order invoice
page on a shopping website (Amazon) with personal details such
as the name and address of the buyer. The buyer wants to convince
a third-party (verifier) about the charged price of a particular prod-
uct on a particular date. In this example, we use AES-GCM cipher-
suite and Reveal mode. Only necessary details in the invoice like
the item name, item price and order date are revealed, while hiding
the rest. Number of AES blocks revealed from the response is 20
(thanks to a long product name). In addition, 4 AES blocks from the
request are revealed to prove that the correct endpoint is accessed.
Context integrity is guaranteed by revealing unique strings around,
e.g., the string “<tr>Order Total:” near the item price appears only
once in the entire response.

F KEY-VALUE GRAMMARS AND TWO-STAGE
PARSING

F.1 Preliminaries and notation

We denote context-free grammars as G = (V , Σ, P , S) where V is a
set of non-terminal symbols, Σ a set of terminal symbols, P : V →
(V ∪ Σ)∗ a set of productions or rules and S ∈ V the start-symbol.
We define production rules for CFGs in standard notation using
‘-’ to denote a set minus and ‘..’ to denote a range. For a string w ,
a parser determines if w ∈ G by constructing a parse tree for w .
The parse tree represents a sequence of production rules which can
then be used to extract semantics.
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<table >

<tr>Order Placed: November 23, 2018</tr>

<tr>Order Total: $34.28</tr>

<tr>Items Ordered: Food Processor</tr>

</table >

...

<b> Shipping Address: </b>

<ul class ="displayAddressUL ">

<li class ="FullName ">Alice </li>

<li class ="Address">Wonderland </li>

<li class ="City ">New York </li>

</ul>

Figure 11: The order invoice page on Amazon in HTML.

Revealmode is used to reveal the necessary text, while sensi-

tive text below is kept hidden.

F.2 Key-value grammars

These are grammarswith the notion of key-value pairs. These gram-
mars are particularly interesting for DECO since most API calls
and responses are, in fact, key-value grammars.

Definition F.1. G is said to be a key-value grammar if there exists
a grammar H , such that given any s ∈ G, s ∈ H , and H can be
defined by the following rules:
S → object
object → noPairsString open pair pairs close
pair → start key middle value end

pairs → pair pairs | ""
key → chars
value → chars | object
chars → char chars | ""
char → Unicode - escaped | escape escaped | addedChars
special → startSpecial | middleSpecial | endSpecial
start → unescapeds startSpecial

middle → unescapedm middleSpecial

end → unescapede endSpecial

escaped → special | escape | ...

In Def. F.1, S is the start non-terminal (represents a sentence in
H ), the non-terminals open and close demarcate the opening and
closing of the set of key-value pairs and start, middle, end are
special strings demarcating the start of a key-value pair, separation
between a key and a value and the end of the pair respectively.

In order to remove ambiguity in parsing special characters, i.e.
characters which have special meaning in parsing a grammar, a
special non-terminal, escape is used. For example, in JSON, keys
are parsed when preceded by ‘whitespace double quotes’ (‘‘) and
succeeded by double quotes. If a key or value expression itself
must contain double quotes, they must be preceded by a backslash
(\), i.e. escaped. In the above rules, the non-terminal unescaped
before special characters means that they can be parsed as special
characters. So,moving forward, we can assume that the production
of a key-value pair is unambigious. So, if a substring R′ of a string R
in the key-value grammar G parses as a pair, R′ must correspond
to a pair in the parse tree of R.

Note that in Def. F.1, middle cannot derive an empty string, i.e.
a non-empty string must mark middle to allow parsing keys from
values. However, one of start and end can have an empty deriva-
tion, since they only demarcate the separation between value in
one pair from key in the next. Finally, we note that in our discus-
sion of two-stage parsing for key-value grammars, we only we con-
sider permissible paths with the requirement that the selectively
opened string, Ropen corresponds to a pair.

F.3 Two-stage parsing for a locally unique key

Many key-value grammars enforce key uniqueness within a scope.
For example, in JSON, it can be assumed that keys are uniquewithin
a JSON object, even though there might be duplicated keys across
objects. The two-stage parsing for such grammars can be reduced
to parsing a substring. Specifically, Trans extracts fromR a continu-
ous substring R′, such that the scope of a pair can be correctly de-
termined, even within R′. For instance, in JSON, if consG,G′(R,R

′)

returns true iff R′ is a prefix of R, then only parsing R′ as a JSON,
up to generating the sub-tree yielding Ropen is sufficient for deter-
mining whether a string Ropen corresponds to the correct context
in R.

F.4 Grammars with unique keys

Given a key-value grammar G we define a function which checks
for uniqueness of keys, denoted uG . Given a string s ∈ G and an-
other stringk ,uG(s,k) = true iff there exists at most one substring
of s that can be parsed as start k middle. Since s ∈ G, this means,
in any parse tree of s , there exists at most one branch with node
key and derivation k . Let ParserG be a function that returns true if
its input is in the grammar G. We say a grammar G is a key-value
grammar with unique keys if for all s ∈ G and all possible keys k ,
uG(s,k) = true, i.e. for all strings R, C :

〈ParserG ,R〉 ⇒ true

〈uG, (R,C)〉 ⇒ true
.

F.5 Concrete two-stage parsing for unique-key
grammars

Let U be a unique-key grammar as given above. We assume that
U is LL(1). This is the case for the grammars of interest in Section
6. See [43] for a general LL(1) parsing algorithm.

We instantiate a context function, CTXU for a set T , such that
T contains the permissible paths to a pair for strings in U. We
additionally allow CTXU to take as input an auxiliary restriction,
a key k (the specified key in P’s output Ropen). The tuple (T , k) is
denoted S and CTXU (S, · , · ) as CTXU,S .

Let P be a grammar given by the rule SP → pair, where pair
is the non-terminal in the production rules for U and SP is the
start symbol in P . We define ParserP,k as a function that decides
whether a string s is in P and if so, whether the key in s equals
k. On input R,Ropen, CTXU,S checks that: (a) Ropen is a valid key-
value pair with key k by running ParserP,k (b) Ropen parses as a
key-value pair in R by running an LL(1) parsing algorithm to parse
R.

To avoid expensive computation of CTXU,S on a long string R,
we introduce the transformation Trans, to extract the substring R′

of R, such that R′ = Ropen as per the requirements.
For string s, t , we also define functions substrinд(s,t), that re-

turns true if t is a substring of s and equal(s,t) which returns true
if s = t . We define consU,P with the rule:

〈substrinд(R,R′)〉 ⇒ true 〈ParserP,k,R
′〉 ⇒ true

〈consU,P, (R,R
′)〉 ⇒ true

.
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and S ′ = {SP }. Meaning, CTXP (S,R
′,Ropen) = true whenever

equal(R′,Ropen) and the rule

〈equal , (R′,Ropen)〉 ⇒ b

〈CTXP , (S
′,R′,Ropen)〉 ⇒ b

holds for all strings R′,Ropen .

Claim 1. (consU,P , S
′) are correct with respect to S .

Proof. We defer a formal proof and pseudocode for CTXU,S

to a full version, but the intuition is that if R′ is substring of R, a
key-value pair Ropen is parsed by ParserP , then the same pair must
have been a substring ofU. Due to global uniqueness of keys inU,
there exists only one such pair Ropen and CTXU (S,R,Ropen) must
be true. �
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